

OUR WIND OUR POWER OUR FUTURE

Composite subgroup lead C.P. "Case" van Dam

Warren & Leta Giedt Endowed Professor Chair, Mechanical & Aerospace Engineering University of California, Davis Davis, CA cpvandam@ucdavis.edu

Brief Bio - Case van Dam

- Faculty member at UC Davis since 1985
- Active in wind energy since 1988
- Founded California Wind Energy Collaborative in 2002
- Department chair since 2010
- Graduated a large number of MS and PhD students who are now active professionals in wind energy

Alumni Active in Wind Energy

•	Jonathan Baker	PhD 2009	Frontier Wind, Rocklin, CA
•	Myra Blaylock	PhD 2012	Sandia National Laboratories
•	Ray Chow	PhD 2011	UC Davis
•	Aubryn Cooperman	PhD 2012	TU Delft
•	Phil De Mello	PhD 2012	UC Davis
•	Kevin Jackson	PhD 1989	Dynamic Design, Davis, CA
•	Scott Johnson	MS 2008	Siemens Wind, Boulder, CO
•	Rob Kamisky	MS 2007	UC Davis/
•	Scott Larwood	PhD 2009	University of the Pacific, CA
•	Edward Mayda	PhD 2007	Siemens Wind, Boulder, CO
•	Dora Yen Nakafuji	PhD 2001	Hawaiian Electric Company
•	Henry Shiu	MS 2000	UC Davis
•	Kevin Standish	MS 2003	Siemens Wind, Boulder, CO
•	Jose Zayas	MS 2002	U.S. Department of Energy

- Built-environment test turbine at UC Davis
- Building integrated wind power project
- Small turbine short courses
- Feasibility study of behind the meter wind power for brewery
- Study on agricultural application of wind turbines
- Built-environment wind turbine workshop and road map contributor
- California GIS wind map interface

Partial List of Distributed Wind ActivitiesBuilt-environment test turbine at UC Davis

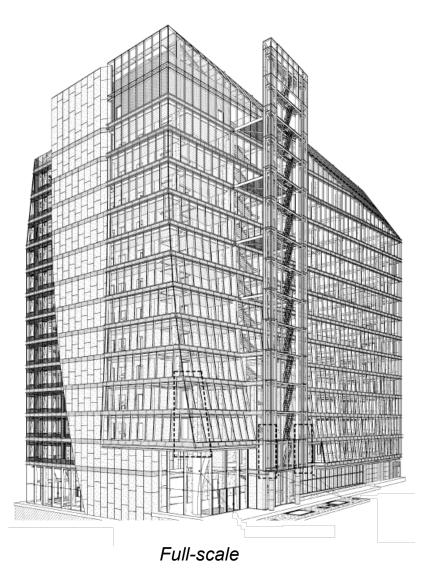
- - Building integrated wind power project
 - Small turbine short courses
 - Feasibility study of behind the meter wind power for brewery
 - Study on agricultural application of wind turbines
 - Built-environment wind turbine workshop and road map contributor
 - California GIS wind map interface

Turbine

Demonstration Site

- Bergey XL1 on roof of Bainer Hall
- Used as a demonstration site...
 - Collecting meteorological data and performance data for turbine in built environment
 - Undergraduate senior design research projects (redesign blade set)
 - Basis for providing general wind energy information (group tours, interested

students)



- Built-environment test turbine at UC Davis
- Building integrated wind power project
 - Small turbine short courses
 - Feasibility study of behind the meter wind power for brewery
 - Study on agricultural application of wind turbines
 - Built-environment wind turbine workshop and road map contributor
 - California GIS wind map interface

Building Integrated Wind Power Project

1:150 scale wind tunnel model

- Built-environment test turbine at UC Davis
- Building integrated wind power project
- - Small turbine short courses
 - Feasibility study of behind the meter wind power for brewery
 - Study on agricultural application of wind turbines
 - Built-environment wind turbine workshop and road map contributor
 - California GIS wind map interface

One-Day Short Course on Small Wind Energy Systems

8:00 – 8:30 am Welcome & Introductions

8:30 – 9:45 am Overview & Perspectives on Wind Energy Large & Small

O What is wind energy, what is small wind?

O What are the upcoming changes?

9:45 – 10:00 am Break

10:00 – 11:45 am Wind Resource Assessment for Small Wind

o Do I have enough wind?

o How do I determine my wind resource?

11:45 – 12:45 pm Lunch Break

12:45 – 1:45 pm Siting Considerations & Challenges

What does the government require me to do?

1:45 – 2:45 pm Economics & Incentives

o Is it worth my investment?

What can the government do for me?

2:45 – 3:00 pm Break

3:00 - 4:30 pm Installing a Small Turbine

What to do from A to Z

4:30 – 5:00 pm Wrap-Up

Instructors: C.P. (Case) van Dam, UC Davis, cpvandam@ucdavis.edu

Rob Kamisky, UC Davis, rjkamisky@ucdavis.edu

Sean Kenny, Fresco Solar & Wind, sean@frescosolar.com

- Built-environment test turbine at UC Davis
- Building integrated wind power project
- Small turbine short courses
- - Feasibility study of behind the meter wind power for brewery
 - Study on agricultural application of wind turbines
 - Built-environment wind turbine workshop and road map contributor
 - California GIS wind map interface

View of Brewery with Utility-Scale Turbine

Study Outline

- Preliminary wind resource assessment based on:
 - Existing local anemometer data
 - Computational modeling (California Wind Resource Maps)
- Calculation of energy production
- Economic analysis
 - Including state and federal incentives, federal tax credits
- Installation of on-site anemometer to obtain accurate wind data
- Communicating with FAA regarding obstruction evaluation and long range radar
- Communicating with utility regarding interconnection
- Investigating various setback requirements

- Built-environment test turbine at UC Davis
- Building integrated wind power project
- Small turbine short courses
- Feasibility study of behind the meter wind power for brewery
- - Study on agricultural application of wind turbines
 - Built-environment wind turbine workshop and road map contributor
 - California GIS wind map interface

Case Study: Irrigation in Salinas Valley

- One 450 acre ranch
 - Two wells (two 50kW pumps on each)
 - Conversion: 100 hp = 75 kW
 - Each well requires ~100kW to operate irrigation system

Energy Cost Summary (2007)

	Well 1 (AG-1B)	Well 2 (AG-5B)
Energy Use	100,445 kWh/yr	139,740 kWh/yr
Energy Charge	\$0.15/kWh	\$0.05-0.16/kWh
Energy Cost	\$15,140	\$10,750
Monthly Demand	98 kW	93 kW
Demand Charge	\$4.20-\$6.08/kW	\$4-10/kW
Demand Cost	\$4,760	\$11,400
Total Cost	\$20,110	\$22,450

Publication Summarizing Distributed Wind Projects

Encyclopedia of Agricultural, Food, and Biological Engineering, Second Edition

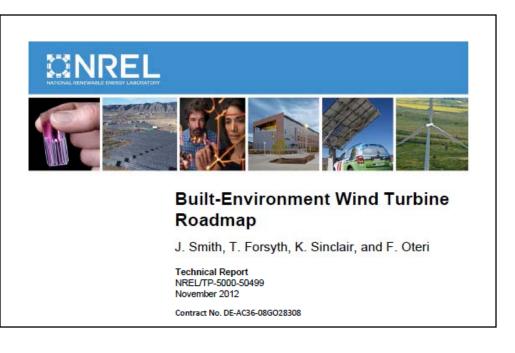
Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/doi/book/10.1081/E-EAFE2

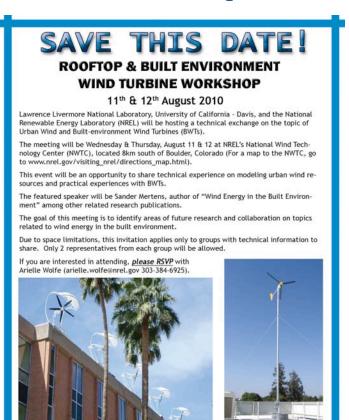
Wind Power for Farming and Food Processing

C.P. van Dam Henry Shiu Scott Johnson a, Scott Larwood b

Published online: 01 Feb 2013

^a Department of Mechanical and Aerospace Engineering, University of California—Davis, Davis, California, U.S.A.


^b Department of Mechanical Engineering, University of the Pacific, Stockton, California, U.S.A.


- Built-environment test turbine at UC Davis
- Building integrated wind power project
- Small turbine short courses
- Feasibility study of behind the meter wind power for brewery
- Study on agricultural application of wind turbines
- - Built-environment wind turbine workshop and road map contributor
 - California GIS wind map interface

Built-Environment Wind Turbine Workshop and Roadmap

 Contributor to workshop and reviewer of roadmap

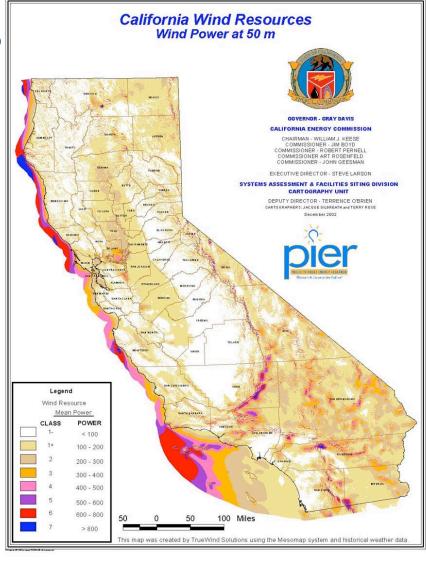
RSVP Required

UCDAVIS

Lawrence Livermore
National Laboratory

- Built-environment test turbine at UC Davis
- Building integrated wind power project
- Small turbine short courses
- Feasibility study of behind the meter wind power for brewery
- Study on agricultural application of wind turbines
- Built-environment wind turbine workshop and road map contributor

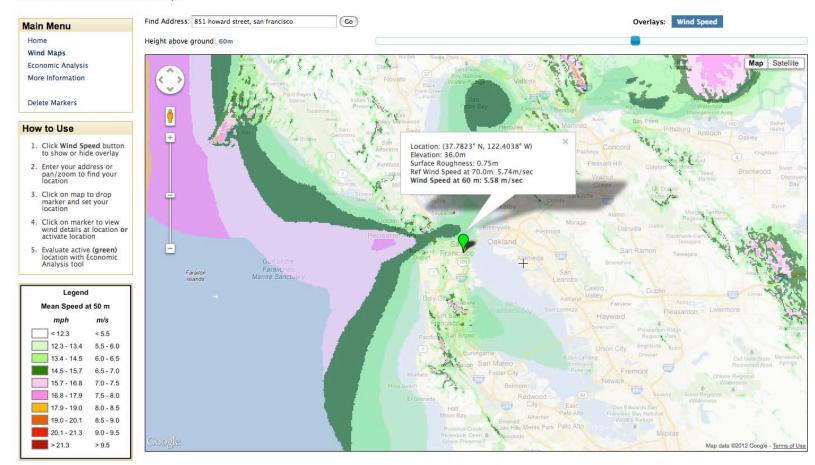
California GIS wind map interface


GIS Map Tool Interface

- Effort funded by California Energy Commission
- Develop an online wind assessment tool for general public
 - CEC/PIER funded development of detailed wind maps for California
 - Maps provide annual wind power and speed at several heights above the ground
 - Maps generated by AWS TruePower
 - Maps are available in pdf format from CEC website
 - Difficult to pinpoint locations and determine wind speed at specified location and height
 - CEC has GIS-based version of wind maps
 - Disadvantage of GIS-based wind maps is that specific software (ArcExplorer) is needed to access information
 - Limited to 30, 50, 70, 100 m AGL
 - Develop a web-based version of GIS-based wind maps
 - Combine GIS-based wind maps with Google maps
 - Allow users to click on or search for a particular location to view wind data information
 - Able to get wind data as function of height

California Wind Maps

- Maps of annual average wind speed and power have been produced for California
- Maps have a grid resolution of 200 m
- Actual winds at a specific site for the turbine can vary significantly from the map
- Maps are good tools for guiding and estimating but do not replace <u>Micro-Siting</u>



Wind energy density at 50 meters above ground. California Energy Commission. http://www.energy.ca.gov/maps/wind.html

GIS Map Tool Interface

CWEC Tools: Wind Resource Maps

Final Observations

- Extensive experience in (distributed) wind energy
 - Education
 - Training
 - Outreach
 - Cooperative efforts with industry and government labs and agencies
 - Research:
 - Rotor design
 - Turbine performance
 - Forecasting
 - Siting
 - Etc.

