# **SMART Wind Consortium**Subgroup Leads







Structural Engineering
subgroup lead
Asad Esmaeily, Ph.D., P.E.
Professor of Structural Engineering
Kansas State University, Manhattan, KS
asad@k-state.edu







## **Education**

- PhD in Civil (Structural) Engineering from University of Southern California (USC, 2001)
- MS in Civil Engineering from USC
- MS in Electrical Engineering "Image/Signal Processing, Random Processes, and Solid-State Devices, from USC
- MS in Civil Engineering, Tehran University, 1985
- BS in Civil Engineering, Tehran University 1982



## **Teaching**

- Professor of "Structural Engineering" at Kansas State University, Civil Engineering Department, since August 2002
- Teaching
  - Graduate Courses
    - Structural Dynamics
    - Advanced Reinforced Concrete
    - Design of Structures under Dynamic Loads
  - Undergraduate Courses
    - Design of Reinforced Concrete Structures
    - Design of Steel Structures
    - Structural Analysis
    - Statics/Dynamics



## **Research Interests**

- Material models and analytical methods in reinforced concrete structures
- Experimental Methods in civil engineering applications
- Damage detection and Structural Health Monitoring
- Performance-Based Design
- Risk-assessment methods and stochastic models in civil engineering
- Remote sensing
- Imaging techniques

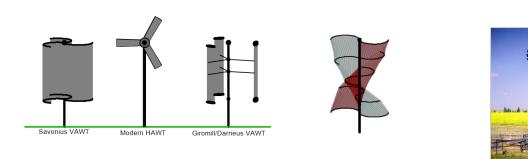


## Research

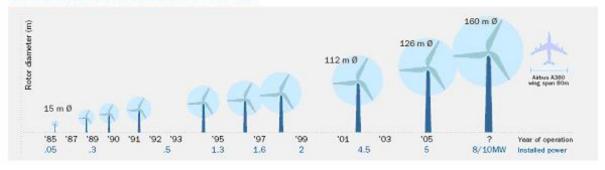
### Research

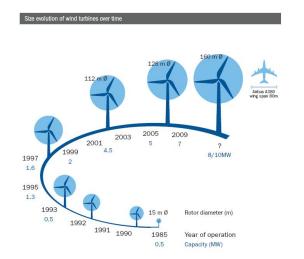
- Damage Detection of Structures
  - Using wavelet Transform with a known excitation
  - Random excitation (wind/traffic load)
- Post Tensioning Inverted T Girders,
- Time-dependent properties of SCC,
- Confined Concrete Models and behavior,
- Seismic Response of Bridge Piers under Various Loading Scenarios,
- Thermal Effects on Integral Bridges, and
- Optimal Algorithms for Structural Damage Detection
- Material (concrete) pore detection (and development of software)

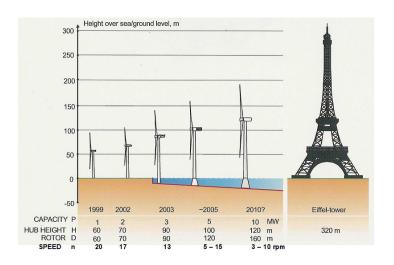



## **Professional**

### Professional Societies


- ASCE
  - ASCE-EMI Institute
  - Chair, Experimental Analysis and Instrumentation Committee
- ACI
  - Committee 441 (Reinforced Concrete Columns)
  - Information Technology
- Associate Editor of the ASCE Journal of Bridge Engineering
- Guest Editor of ASCE Journal of Engineering Mechanics
  - Experimental Methods in Damage Detection <u>ands Winder</u> <u>UNIVERSITY</u>
    Department of Civil Engineering


## **Distributed Wind Activities**


• Structural issues are a very important aspect of wind turbine – Evolution on time:



#### Size evolution of wind turbines over time









## Structural Issues

- Quality (various components, including structural)
  - Material Quality and Choice
  - Proper specifications and following that
  - Manufacturing problem
  - Mounting/fastening
  - Proper maintenance
  - Consideration of loads (especially dynamic loads) during the life time of the wind farm considering the site conditions



## **Structural Issues**

- Dynamic properties of the structure as a whole, and also, dynamic response of individual components
  - Structural vibration modes, as a whole and components
  - Vibration induced by wind
    - Resonance
    - Noise issue
- Fatigue and failure of critical structural parts
- Many other structural issues that go hand in hand with mechanical/electrical aspects as State

## Structural Issues

- Past failures, help with a safer design and maintenance
  - Well studied selection of the type, size, material, etc. considering the location and targeted power generation
  - Design and construction process
  - Maintenance
    - A reliable inspection process
    - A reliable continuous health-monitoring system and real-time damage detection





KANSAS STATE
UNIVERSITY

Department of Civil Engineering