

"Providing the conduit between research and the market"

New York Wind Turbine

Blade Test Facility:

Intertek

An Opportunity for Turbine Manufacturers and Research

Prof. Pier Marzocca

Mechanical and Aeronautical Engineering Department

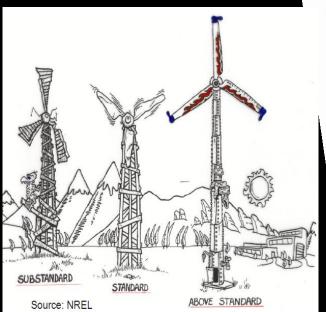
Prof. Kerop Janoyan

Civil and Environmental Engineering Department

Daniel Valyou

Facility Manager, CECET BTF

Partners:



PROGRAM GOALS

Problems

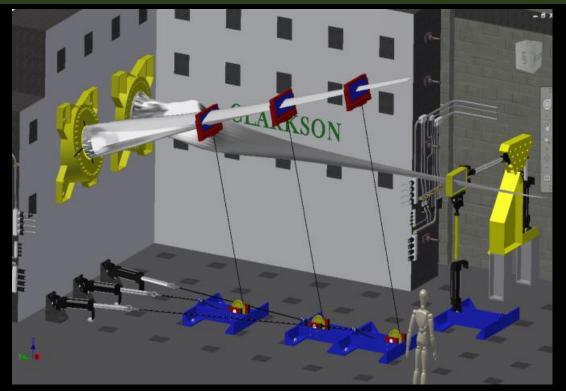
Solutions

Facility Capabilities

 Structures and Materials Testing Laboratory

Blade Test Facitity

- □ Full-scale/scaled wind turbine blade testing up to 15 meters
- New rotor blade designs with cost effective testing capabilities
- Material selection, evaluation of the structural lay-out
- New testing methodologies in support of NREL and SANDIA


Testing Services

Services for Wind Turbine Blade Testing:

- ☐ Certification testing services
 - IEC 61400-2
 - ☐ IEC 61400-23
 - AWFA 9.1
 - MCS 006
 - □ RUK 2014 (formerly BWEA 2008)
- ☐ Rotor blade design validation
- ☐ Manufacturing quality verification
- ☐ Validation of design improvements
- ☐ Rotor blade hub integration
- ☐ Structural integrity under load

Additional wind structures services:

- ☐ Testing nacelles and towers
- ☐ Testing advanced blade sensing and actuators
- ☐ Testing of material/structural coupons (*)
- □ NDT methods developed for rotor blades (*)
- ☐ Testing advanced pitch and stall control algorithms (*)
- Conducted via Center for Advanced Materials Processing

Blade Structural Testing

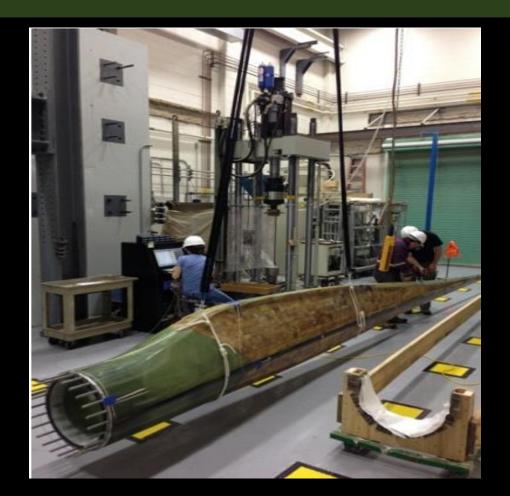
Static Test

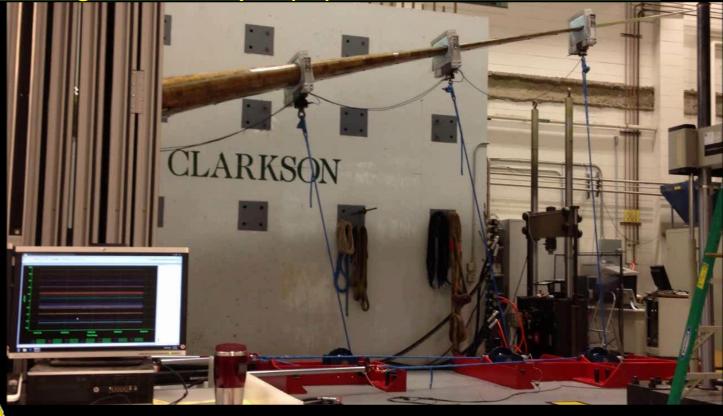
Blade Testing: Testing

Blade Testing (static, fatigue, and modal)

Safety Features

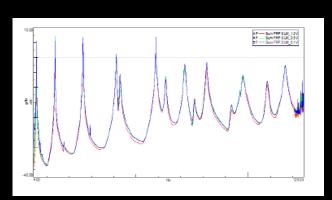
- **Load Abort system**
- **Load Limiting Manifold**
- Redundant interlocks
- Separate hydraulics per station

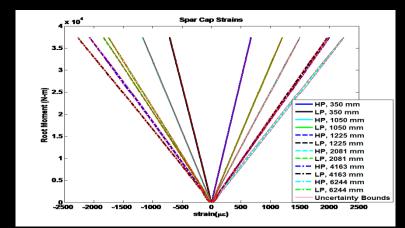


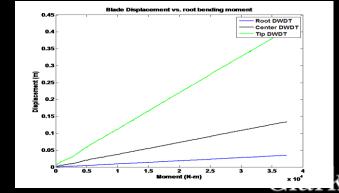

BSDS Modal Testing

Blade Testing: Static Test pull (8X)

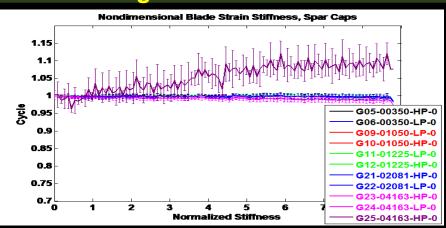
Blade Testing: Fatigue Testing

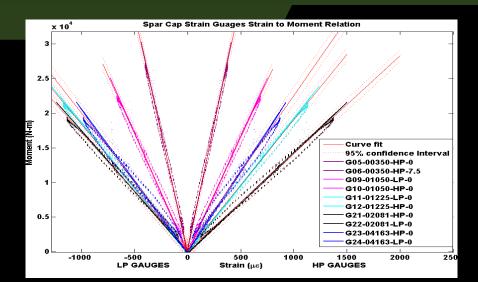


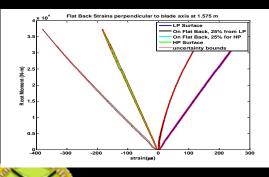

Blade Testing: Results

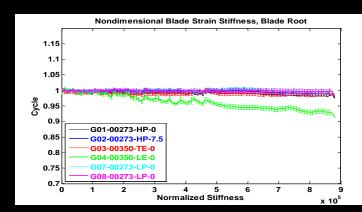

Test results

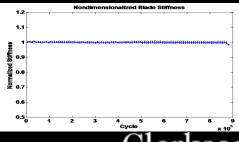
Test data
Data analysis
Reporting
Failure criteria










Blade Testing: Results

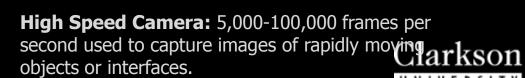
Clarkson University Wind Tunnel

Clarkson University Subsonic Tunnel # 1

80 m/s subsonic tunnel outfitted for aerodynamic testing with a 6 component force balance, several position control systems, particle image velocimetry (PIV), laser doppler velocimetry (LDV) and flow visualization. Suitable for aerodynamic testing, scale and small wind turbine testing.

Clarkson University Subsonic Tunnel # 2

12 m/s subsonic tunnel with high inlet air quality, established through 228 sq. ft. of HEPA filter. Suitable for aerosols testing and environmental / low speed wind testing.


Clarkson University Wind Tunnel

Visualization systems (PIV, PDPA, high speed camera)

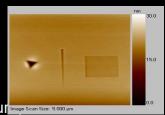
Particle Image Velocimetry (PIV): Used for non-intrusive laser optical measurement s. Measurement data include velocity, concentration, temperature, combustion species and particle size.

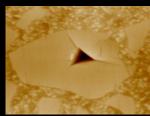
Phase Doppler Particle Analyzer/Laser Doppler Velocimetry (PDPA/LDV): Pre-configured three-component (3D) PDPA/LDV system is used to get all three components of velocity simultaneously.

Clarkson University Wind Tunnel – Wind Turbine Testing

Workforce and Training Development Courses

The BTF supports industry participation & continuing education through Distance Learning and Workforce Development Program.




Micro- and nano-scale testing capabilities

- Nanoindentation
 - Protective Coatings
 - Nanomechanical testing of thin films for integrated Circuits
 - Thin films for composites, disks, and passivation layers
- Scanning Tunneling Electron Microscopy
- Atomic Force Microscopy
 - Used to study NanoMechanics
 - Nondestructive measurement of specimens down to molecular size
 - Capable of viscoelastic characterization
- Hardness and Microhardness
 - Rockwell, Knoop, and Vickers hardness
 - Leco Microhardness Tester
- Dynamic Mechanical Analyzer
 - Characterize Polymer and composites viscoelastic properties
 - Thin film / single fiber tensile testing
- Thermo Mechanical Analyzer
 - Characterize material dimensional responses to time, temperature or force
 - Measures coefficient of thermal expansion, heat distortion temperature, stress/strain ramps, creep, stress relaxation
 - Suitable for dynamic thermomechanical analysis and modulated thermomechanical analysis

Macro-scale mechanical testing capabilities

- Hardness
- Wear resistance facility
- Creep related facility and Environmental chamber
- Fouling and corrosion accelerated testing facilities
- Wabash Hydraulic Heated Platen Press
 - Composite Molding
 - Ceramic Molding
- High temperature Mechanical Testing System
- Spin Coater for thin film processing
- Multi-gravity research welding system
- Oven and Laboratory hoods
- Advanced Welding and Welding Metallurgy facility
 Mechatronics Lab and prototyping shop

esearch Machine Shop

✓ibration and Control Systems Testing facility

of convention

Creep Related Facility and Environmental Chambers

- Electromechanical load frames
- Bending creep test machine
- Coefficient of thermal expansion testing of long gagelength specimens
- Load frame temperature chambers

Research Machine Shop Fabrication Capabilities

- Standard and CNC milling machines
- Standard and CNC lathes
- Rapid Prototyping
 - Stereolithography

3D Printing (Makerbot)

Stereolithography

http://www.clarkson.edu/rapidprototype/docs/Stereoli

thography_Pres.ppt

Clarkson is using a Viper Si2 ® SLA system with

epoxy resin

CONTACT US

CECET BLADE TEST FACILITY, bladetest@clarkson.edu

Prof. Pier Marzocca, CECET Representative and Co-Director, pmarzocc@clarkson.edu
Prof. Kerop Janoyan, BTF Co-Director, kjanoyan@clarkson.edu
Daniel Valyou, Facility Manager/ Test Engineer, valyoudn@clarkson.edu
Rick Lewandowski, CECET Executive Director, Richard.lewandowski@intertek.com

Current staff includes 5 core faculty, a dedicated facility manager, three graduate students, two undergraduate students, and three external consultants.