SMART Wind Consortium

Overview of DWEA OEM Steering Group Members, Top-Level Manufacturing Gaps & Opportunities Summary of Questionnaire Results

Trudy Forsyth and Brent Summerville Launch Event, Albany, NY October 16, 2014

xzeres

Aeronautica Windpower
Bergey Windpower
Black Island Wind Turbines
Dakota Turbines
Endurance Wind Power
Eocycle Technologies
Northern Power Systems
Pika Energy
Primus Windpower
Ventera Wind
Xzeres Wind

Thank you to our OEM Steering Group Members

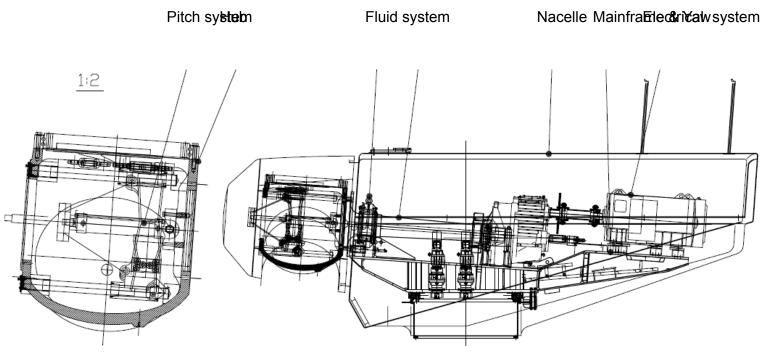
Questionnaire

Interviews

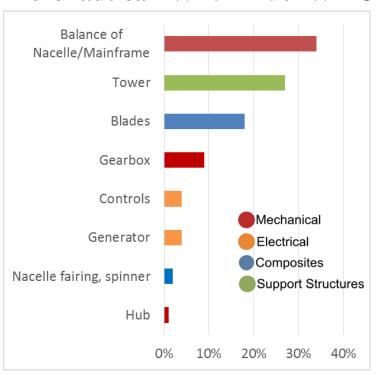
Aeronautica WindpowerContact: **Brian Kuhn**, **Tim Stearns**

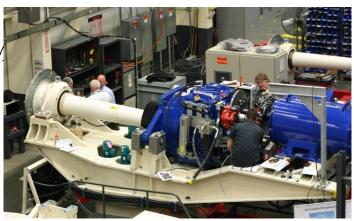
Summary

- Turbine: AW750 (47 m & 54 m rotors), Danish (Norwin) design
- In business 7 yrs, started with refurbishing, first 750 kW in 2011
- Opportunities in castings; US-made has cost issues, other sources have quality issues
- Blades made in MI; towers in TX & MI; nacelles, rotor, controls in NH; sales, marketing, service in Plymouth, MA
- Subgroups: Mechanical, Electrical



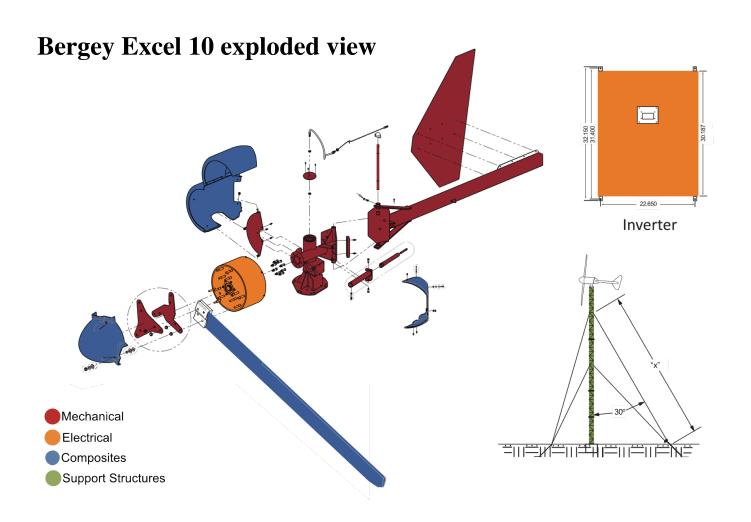
www.aeronauticawind.com




Aeronautica AW750

Transmission system

Aeronautica AW-54-750kW BOM



Bergey Windpower CompanyContact: **Mike Bergey**

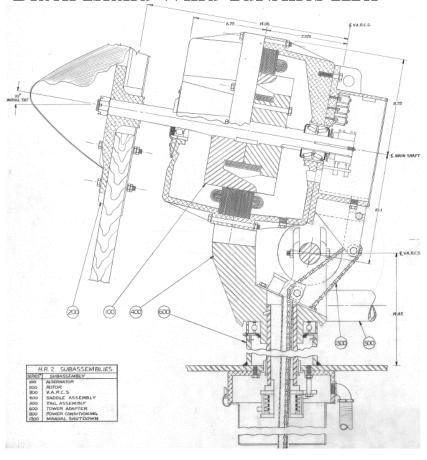
Summary

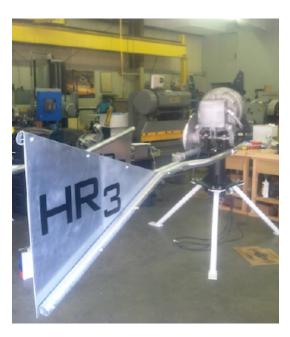
- Turbines: Excel 6 & 10, both AWEA certified by SWCC
- In business 37 yrs, first turbine in 1980
- Opportunities in blade material advances, process improvements, automation
- Manufactured in Norman, OK
 - Interested in bringing some components currently produced by vendors in-house
- Subgroups: Mechanical, Electrical, Composites, Support Structures

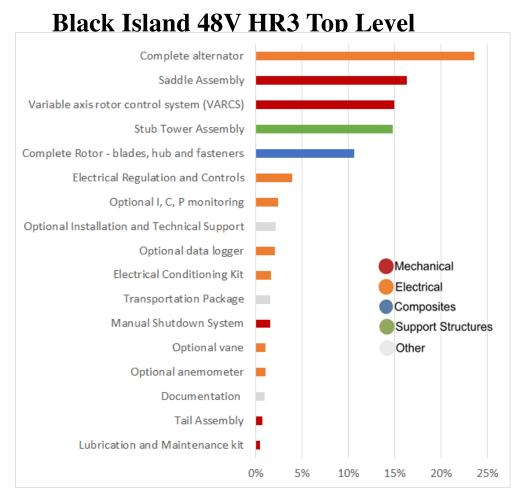
Bergey Windpower Company

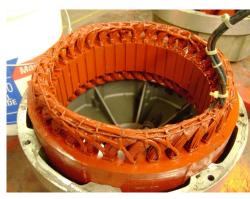
Black Island Wind Turbines Contacts: Patrick Quinlan, Bill Stein

Summary


- Turbine: HR3, tested at AEI facility in Canyon, TX
- Originated from 1978 U.S. Department of Energy contract to develop a high-reliability small wind turbine
- In business 3 yrs, first turbine in 2013
- Opportunities in blades, generators, and castings, Manufactured in Hadley, MA
- Interested in small volume automation and professional development for the industry
- Subgroups: Electrical, Composites




www.blackislandwindturbines.com



Black Island Wind Turbines HR3

Dakota TurbinesContact: **Keith Monson Summary**

- Turbine: 30 kW DT30, under test at High Plains Small Wind Test Center for AWEA certification by SWCC
- In business 8 yrs, first turbine in 2011
- Interested in finding new manufacturing partners using lean manufacturing techniques
- Bulk order for towers
- Most parts manufactured in-house, including blades and inverter, in Cooperstown, ND
 - finding human resources has been challenging
- Subgroups: Electrical, Composites

www.dakotaturbines.net

Dakota Turbines DT30

Endurance Wind Power CompanyContact: **David Laino**

Summary

- Turbine: E-3120, granted SWCC Performance Certification
- In business 7 yrs, first E-series in 2009
- Focused on reduced COE, making parts less expensively (which entails lower cost and/or higher reliability)
- Most parts are made by suppliers, turbine assembled in Surrey, BC
 Just-in-time manufacturing
- Opportunities in tower supply/manufacturing
- Subgroups: Mechanical, Support Structures

www.endurancewindpower.com

Endurance E-3120

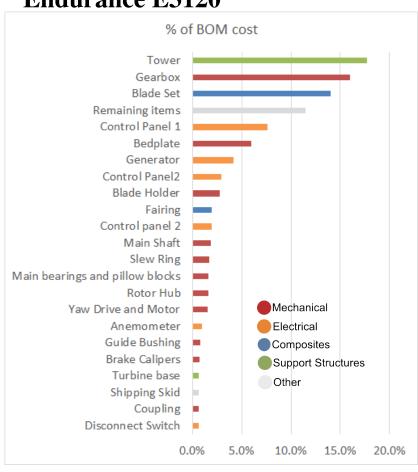
Electrical Systems

- Inverter
- Controller
- Alternator
- Power electronics
- Generator
- Magnets
- Bus bars
- Slip rings
- Interconnection
- System monitoring

Distributed wind energy turbine systems, subsystems, components and piece parts divided into four subgroups

Mechanical Systems

- Shafts
- Bearings
- Braking system
- Gearbox
- Pitching system
- Furling system
- Yaw system


Composites

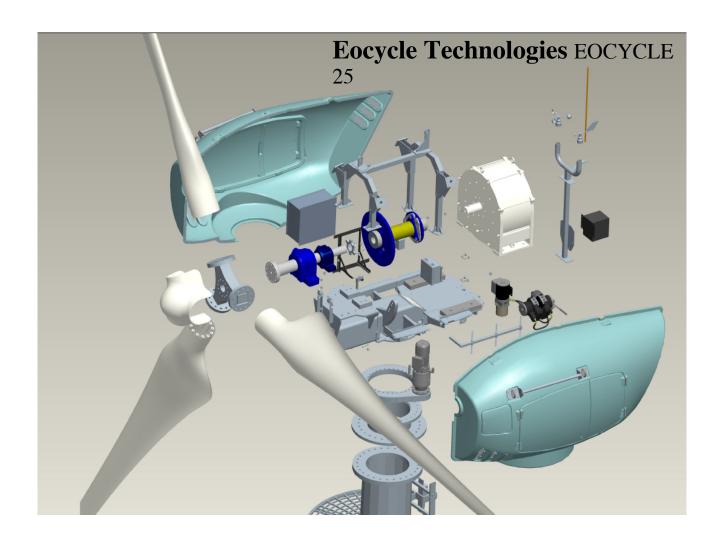
- Blades
- Nacelle housing
- Nosecone
- Tower

Support Structures

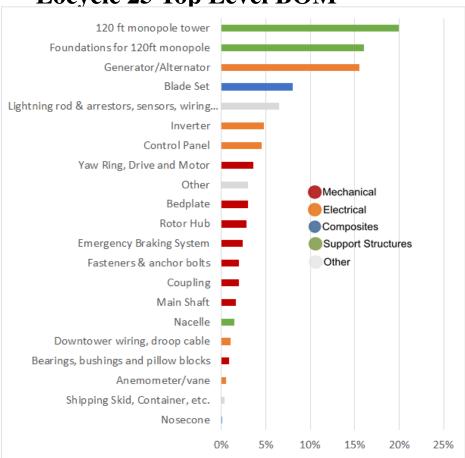
- Tower
- Access ladder
- Foundation
- Anchoring System
- Permitting

Endurance E3120

Eocycle TechnologiesContact: Claude Bourget

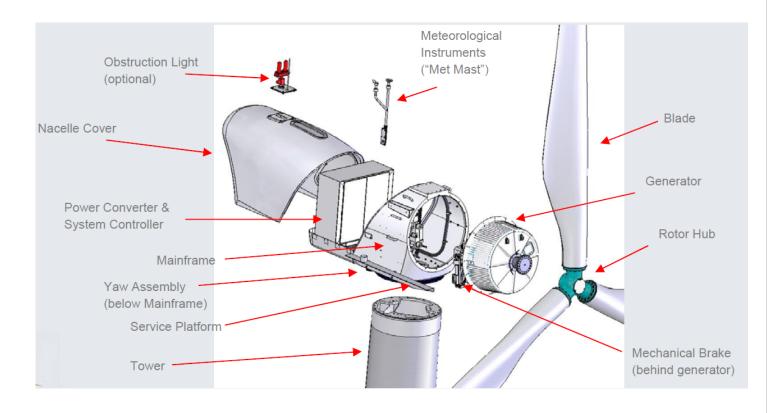

Summary

- Turbine: EOCYCLE 25, pursuing AWEA & BWEA certifications with Intertek
- In business 13 years, first turbine in 2010
- See opportunities with towers, blades as a minimum
- Low volume manufacturing is challenging
- All parts are fabricated by suppliers, turbine assembled in Gaspé, Qc
- Subgroups: Support Structures, Composites



www.eocycle.com

Eocycle 25 Top Level BOM


Northern Power SystemsContact: Chris McKay

Summary

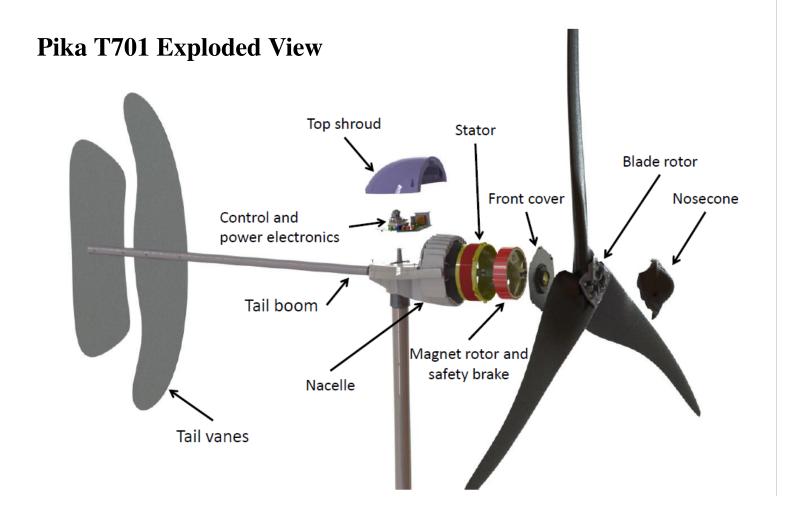
- Turbines: NPS 100C
- In business 40 years, first turbine in 1978
- Interested in automation, in-process testing
- opportunities in blade manufacturing, reducing labor, flexibility, just-in-time
- Turbine manufactured in Barre, VT
- Subgroups: Mechanical, Electrical, Composites, Support Structures

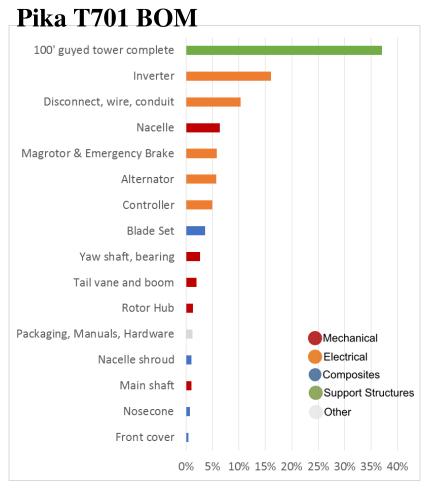
Northwind 100

Northern Power Systems

Pika Energy

Contacts: Andrew Hickock, Ben Polito

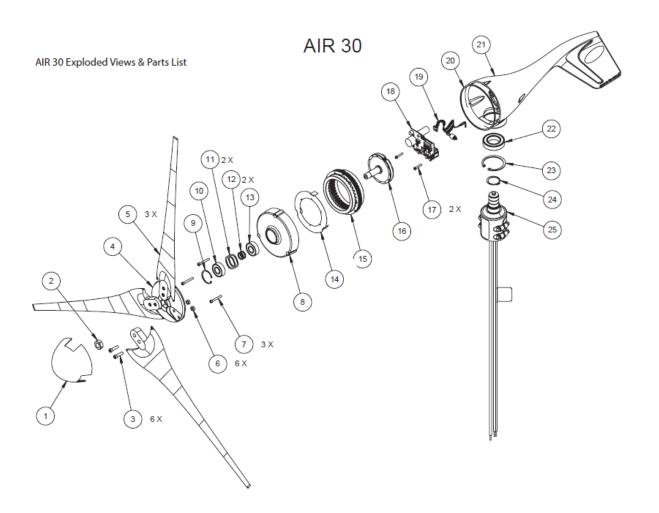



Summary

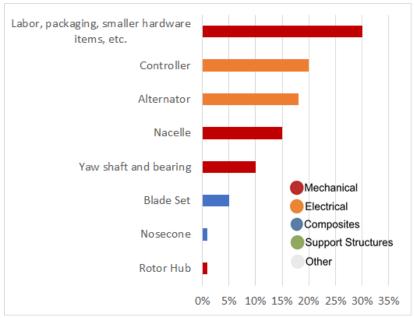
- Turbine: Pika T701, under test at High Plains Small Wind Test Center for AWEA certification by SWCC
- In business 4 years, first turbine in 2013
- See opportunities with castings, blade manufacturing, US-made towers, foundations and power electronics
- Low volume manufacturing is challenging in terms of both capital investments and suppliers
- Turbines assembled in Westbrook, ME
- Subgroups: Support Structures, Electrical

www.pika-energy.com

Primus Windpower Contact: Ken Portolese, Ken Kotalik


primuswindpower

www.primuswindpower.com


Summary

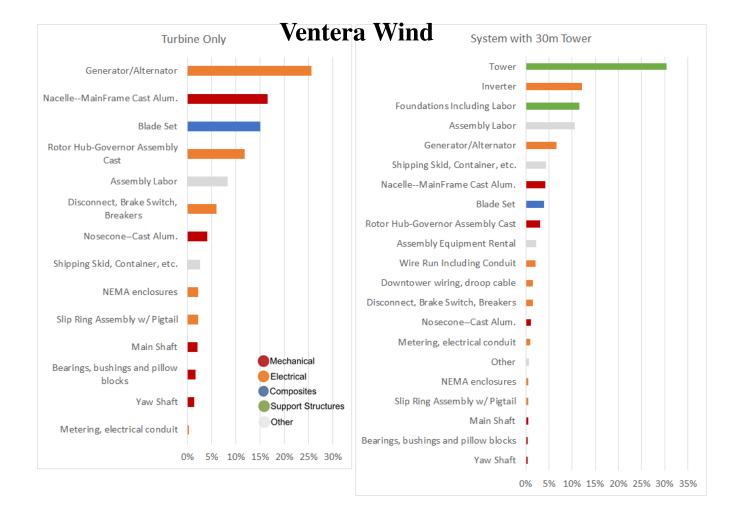
- Turbines: Air 30, 40, Breeze, X
- Typically paired with PV, hybrid
- In business 2 yrs, first turbine in 1995; part of larger Primus Metals
- Sourcing in US sometimes involves design changes, tooling costs
- Challenges with microturbines may differ from larger turbines
- Towers can quickly drive up system costs
- Manufactured in Lakewood, CO
- Subgroups: Electrical

Primus Windpower Air BOM

Ventera Wind Contact: Tom Williams

Summary

- Turbines: VT10
- In business 3 yrs, first turbine in 2007
- Interested in improvements in the whole process, raw material to meter, including training and reliability monitoring
- Opportunities castings, US-made hydraulic or screw jack erected towers, blades, inverters and controller
- Manufactured in Minnesota; nearly all parts sourced in US
- Subgroups: Mechanical, Electrical


www.venterawind.com

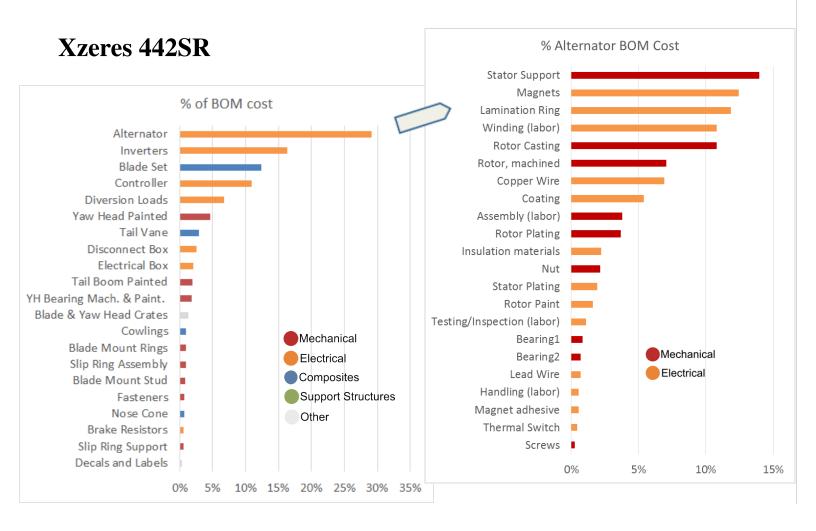
Ventera Wind

Xzeres WindContact: **John McCoury**

Summary

- Turbines: 442SR (under test in Texas for AWEA Std certification with SWCC), Skystream (SWCC certified)
- In business 5 years, first turbine in 2010
- Interested in design improvements, changes and impacts on certification
- Opportunities in blades and alternators
- Most parts are made by suppliers, turbines assembled in Wilsonville, OR
- Subgroups: Electrical, Composites

www.xzeres.com


Xzeres 442SR

SMART Wind Questionnaire Results

Academic and Research Group

Thank you to our Academic and Research Members for their insight provided with the Questionnaire

Selected New Research Opportunities

Composites

Flutter avoidance R&D- Rick Damiani (NREL)

Damage detection methods & advanced composite structural design - Pier Marzocca (Clarkson University)

Low-wind blade design- Patrick LeMieux (CalPoly)

Blade testing, structural dynamics, non-destructive inspection, etc – Chris Niezrecki (UMASS - Lowell)

Advanced blades and blade surface soiling and erosion effects on turbine performance - Case van Dam (UC-Davis)

New blades (~14m) are being designed for the SNL SWiFT facility – Brian Naughton (SNL)

Composites Engineering Research Lab (CERL) on infused thermoplastic blades – Paul Williamson (MOWEI)

Support Structure

Tower and support structure design optimization – Rick Damiani (NREL)

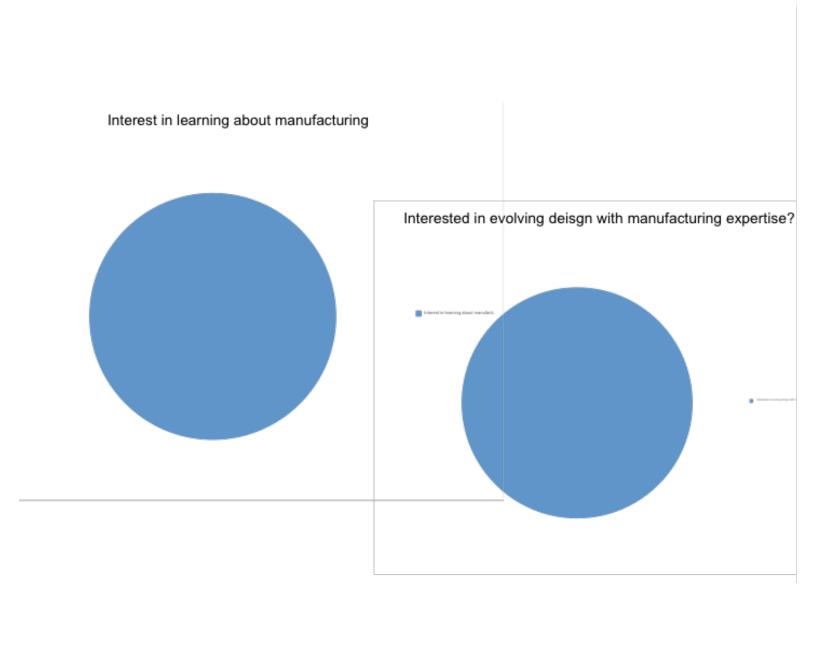
Streamlining of foundations and installation practices – Roger Dixon (Skyland Renewables)

Electrical

Multi-level inverter technology – Ruth Douglas-Miller (KSU)

Mechanical

Pitch control and actuation and control design for maximum energy capture - Patrick Lemieux (CalPoly)


Possible Manufacturing Evolution?

- Machining of stator lamination stacks to avoid shorting between laminations.
- Machining of tape wound cores to avoid shorting between layers
- Methods for automating layup of glass fiber for composite wind turbine blades
- Improvements to gear life through surface treatments
- Reliable, repeatable, low-cost corrosion protection for large ductile iron castings
- Leading edge erosion, composite repair
- Value engineering for small wind foundation and tower design
- Reducing prices for electronic printed circuit boards with low volume production
- Rapid prototyping for use in blade design iteration
- Autoclave/out-of-autoclave processes

Other opportunities/ideas

- Identify regional manufacturer expertise (steel forging, electrical components, casted items, etc) and encourage entry/ conduct meetings with such suppliers to enter wind turbine sector
- Specialized and cost effective manufacturing of stators, rotors, windings and housing for the alternator / generator
- Thermoplastic, injection molded composite blades (http://www.osti.gov/scitech/biblio/921599)
- Absence of dynamic aspects of design and loads analysis
- Speak directly with the machining companies the manufacture components
- Alternator design and manufacturing methods for cost reduction and reliability improvement is critical
- Power electronics manufacturing for small production runs at reasonable cost

SMART Wind Questionnaire ResultsOEM Steering Group

Hard-to-Produce/Source Parts

Composites

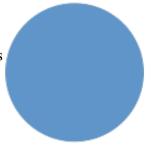
- Blade design and manufacturing optimization
- Automated composite manufacturing as an industry-wide effort
- Green blades--sustainable materials such as bamboo

Power Electronics

Standardizing power electronics

Mechanical – castings

- Learning best practices for CNC machining of near-net-shape castings
- Advanced casting techniques, get more functionality out of fewer parts


Support Structure

Manufactured solutions for foundations, save site logistics cost and complexity

Other

- Tooling and part handling for low volume manufacturing
- Lowering the manufacturing gaps of our suppliers so as to reduce their costs and our price of components
- Fixturing to reduce labor

Interested in new manufacturing partnerships?

What would it take to bring non-U.S. manufacturing back to the U.S.?

Magnets

- It would probably take Federal incentives to get the production of magnets up and running
- Can't source magnets in U.S., competitive U.S. supplier of NdFeB (One OEM is not interested in changing from China magnet supply.)

Lower overall costs

Expertise and prior experience of the supplier in wind turbine components (design and fabrication)

Reduced part costs and minimum quantities of purchase as well as one time/ongoing tooling and set up costs

Would like to source generators from the U.S.

Bulk-purchase material opportunities?

- Magnets
- Wire, switching, semiconductors, disconnect boxes, fuses, fuse holders, contactors, relays
- Composite materials for blades and nacelle covers
- Sensors
- Sheet metals
- Fasteners
- Foam core for fiberglass blades
- Design and CAD software seats

Bulk purchase opportunities?

- Anemometers and tail vanes
- Bearings and alternators
- Large orders of towers (still need unique adaptors)

Expertise

- A supplier ratings and capability exchange--to pool our knowledge of who can supply what at the best quality and price
- Aggregated ordering of small-lot castings
- Gain big-company capabilities regarding supplier selection and purchasing power through purchase aggregation and group contracting
- Knowledge of current state of the art in manufacturing at our scale
- Access to subject-area experts (machinists, mold-makers, etc.)
- Access to state-of-the-art tooling

OEM Research Topics of Interest

Electrical

- Inverters, lightning protection systems, PLCs, phase converters, controller electronics
- Stator/generator design, better ways to automate stator winding

Composites

- Review of composite blade structural design and dynamic behavior
- Blade design and manufacturing optimization, molded blades using carbon fiber Support Structures
- Better dynamic simulation capability for monopole towers.
- Reduce costs of towers and foundations (Standardization of towers)

Mechanical

- Fluids in cold climates
- Better familiarity with FAST

Other

- No/low maintenance designs
- Focus on removing BOS costs (e.g. Instruction manual, training, Installation, shipping, etc) finding ways to work together with/ride the coattails of solar could help us scale up faster

Roadmap