SMART Wind Consortium

Developing a Consensus-Based

Sustainable Manufacturing, Advanced Research & Technology

Roadmap for Distributed Wind

July 2014

2-year grant awarded to DWEA, supported by eFormative Options and Wind Advisors Team to:

- Form a consortium of DW manufacturers, suppliers, university researchers, manufacturing centers; and
- 2) Develop a **roadmap** to identify manufacturing gaps, prioritize actions, and foster solutions

Overall program aim: Strengthen U.S. manufacturing and innovation performance

SMART WIND CONSORTIUM

Proposal to National Institute of Standards & Technology AMTech Program

Developing a Consensus-Based
Sustainable Manufacturing, Advanced Research & Technology
Roadmap for Distributed Wind

2013-NIST-AMTECH-01

www.distributedwind.ou

NIST: Basic Stats and Facts

Major assets

- ~ 3,000 employees
- ~ 2,700 associates and facilities users
- ~ 1,300 field staff in partner organizations
- Two main locations: Gaithersburg, Md., and Boulder, Colo.
- Four external collaborative institutes: basic physics, biotech, quantum, and marine science

FY 2013 Appropriations (\$ in M)

NIST Programs

NIST Laboratories

Providing measurement solutions for industry and the nation

Hollings Manufacturing Extension Partnership

 Nationwide network helping smaller manufacturers compete globally

Baldrige Performance Excellence Program

Strengthening performance excellence in U.S. organizations

NIST's Unique Mission

To promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology in ways that enhance economic security and improve our quality of life.

- Mission focus: Targeted programs to <u>advance U.S. innovation and boost economic growth</u>
- Deep research expertise underpins technological innovation e.g. lasers, memory, GPS, wireless
- Non-regulatory status enables <u>important role as a convener that facilitates collaboration</u> <u>between industry and government</u>

Cybersecurity: Improved response to cyber threats

Nanomanufacturing: New measurement tools for advanced materials manufacturing

Energy: Measurements and standards for energy security

NIST Priority Research Areas

Advanced Manufacturing

IT and Cybersecurity

Healthcare

Forensic Science

Disaster Resilience

Cyberphysical Systems

Advanced Communications

What is AMTech?

Advanced Manufacturing Technology Consortia (AMTech) Program

- ➤ Newly launched by NIST in FY 2013
- To incentivize the formation of and provide resources to industry-led consortia
 - o To support basic and applied research
 - On long-term, pre-competitive and enabling technology development
- For the U.S. manufacturing industry

How Will AMTech Work?

- > FY 2013 AMTech <u>planning awards</u> will fund eligible applicants to create new or strengthen existing industry-led technology consortia
- AMTech-supported consortia will:
 - Identify and prioritize long-term, pre-competitive industrial research needs;
 - Enable technology development;
 - Create the infrastructure necessary for more efficient transfer of technology;
 - Represent a broad range of involved firms across stages of the value chain.
- Once fully implemented, NIST envisions AMTech to offer funding in two broad areas: planning awards and implementation awards

2013 AMTech Planning Grants

Intended to:

- Establish and strengthen industry-led consortia focused on developing advanced technologies to address major technical problems that inhibit growth of advanced manufacturing in the U.S.
- ➤ Identify and prioritize research projects supporting long-term industrial research needs and activities including creating or updating existing industry-led, shared-vision roadmaps for development of technologies underpinning next-generation and/or transformational innovations
- ➤ Undertake other activities designed to establish and strengthen industry-led, multi-partner consortia that catalyze technology infrastructure and American excellence in advanced manufacturing

AMTech Competition Results

Consortia Characteristics

Consortium Status: 11 New

8 Existing

Crosscutting Technologies (# of efforts)

- 1 Additive Manufacturing
- 2 Advanced Forming & Joining Technologies
- 7 Advanced Manufacturing & Testing Equipment
- 2 Advanced Materials Design, Synthesis & Processing
- 1 Advancing Sensing, Measurement & Process Control
- 1 Biomanufacturing & Bioinformatics
- 1 Flexible Electronics Manufacturing
- 2 Sustainable Manufacturing
- 2 Visualization, Informatics & Digital Manufacturing Technologies

Full list at <u>www.nist.gov/amo</u>

Industry Participation

DWEA speaks for all the Major Players

Con·sor·tium: an agreement, combination, or group (as of companies) formed to undertake an enterprise beyond the resources of any one member

Image courtesy NIST

SMART Wind Consortium will connect more than 80 collaborators to form consensus on near-term and mid-term plans needed to increase cost competitiveness through the use of advanced manufacturing techniques www.distributedwind.org/smart-wind-sign-up/

Academic-Research University Participation

Wind Application Center Department of Mechanical Engineering

Appalachian State University

applications center

Department of Civil Engineering

DWEA Executive DirectorJennifer Jenkins

Core Team

Project Manager
Heather Rhoads-Weaver
eFormative Options

Technical Lead
Trudy Forsyth
Wind Advisors Team

Technical Co-Lead
Brent Summerville
Summerville Wind & Sun

DWEA Communications Manager Lauren Glickman WindyGlick

Why Distributed Wind: Benefits to America

- Promotes more energy choices for Americans
- Plays to American technology and manufacturing strengths
- Creates long-term sustainable jobs
- > Strengthens exports
- Increases private sector investment in clean energy
- Places more wind energy in the public eye

Distributed Wind's Diverse Market Potential

NEW ENGLAND TECH A

Schools

Residential

Commercial

Military

Farms

Public

Foreign Assistance

U.S. Small Wind Domestic, Imports, and Export Sales

Estimated Total Available Market

(2030 Theoretical Potential)

Market Segment	2013 Size, Units	Data Source	2030 Size, Units	Percent Suitable	2030 Potential Installed Units	Average Size (kW)	Potential (MW)
Businesses	8,900,000	Census, 2008	14,300,000	15%	2,145,000	350	750,750
Rural Residential	30,600,000	HUD, 2009	49,100,000	50%	24,550,000	10	245,500
Farm	2,200,000	USDA, 2007	2,200,000	60%	1,320,000	150	198,000
Public Buildings	1,200,000	DWEA Estimate	1,350,000	25%	337,500	250	84,375
Schools	140,000	NCES, 2010	165,000	40%	66,000	250	16,500

Total Potential (MW): 1,295,125

Last Small Wind Industry Roadmap was produced in 2002

SMART Wind project
will identify and prioritize
cost-effective solutions so
U.S. distributed wind industry can
claim its share of projected
potential global \$2 trillion market

Initial SMART Wind strategies

- Identify common distributed wind manufacturing gaps and barriers
- Prioritize solutions to those gaps for today and for future scalability
- Facilitate a rapid transfer of innovation into American-manufactured wind turbines, open new market opportunities, expand distributed wind applications
- Reduce lifecycle costs, maintain high product quality and value
- Secure U.S. global competitiveness and leadership

Consortium Meetings

- Bring together critical U.S. distributed wind turbine and component manufacturers to maintain edge in a growing global market
- Leverage industry-academic dialogue to develop strategies to aid distributed wind industry growth and advance innovative manufacturing techniques
- Share ideas and forge ahead as global leaders in the growing market of distributed wind

Consortium Organization

DWEA OEM
Steering Group
(Subgroup Co-Leads)

Jennifer Jenkins

DWEA

Consortium Lead

Research &
Academia
Group
(Subgroup Co-Leads)

Amy Morrison
Matt Gagne
Kurt Sahl
EFO Support

Heather Rhoads-Weaver

> eFormative Options

Project Manager

Mary Childress CPA

Lauren Glickman DWEA Communications Manager

Christine Larsen
DWEA Logistics
Support

Trudy Forsyth

Wind Advisors Team

Technical Lead

Ruth
Baranowski
WAT
Communications
Director

Core & Support Team

Brent Summerville

Summerville Wind & Sun

Co-Technical Lead

Consortium Structure: DW Supply Chain

Electrical Systems

- Inverter
- Controller
- Alternator
- Power electronics
- Generator
- Magnets
- Bus bars
- Slip rings
- Interconnection
- System monitoring

Distributed wind energy turbine systems, subsystems, components and piece parts divided into four subgroups

Mechanical Systems

- Shafts
- Bearings
- Braking system
- Gearbox
- Pitching system
- Furling system
- Yaw system

Composites

- Blades
- Nacelle housing
- Nosecone
- Tower

Support Structures

- Tower
- Access ladder
- Foundation
- Anchoring System
- Permitting

Subgroup Boundaries

Mechanical subsystems

Boundary vs. Support Structure is the tower top

 Rotor, hub, mainshaft,
 mainframe: Rotor connection to generator, generator support

 Overspeed control/yaw mechanism (i.e pitching, furling, yawing)

Tower top/bed plate, tower adapter

Electrical subsystems

- Generator
- Power electronics
- Balance of system electrical components (all the way up to the electrical service; transformer, bus bars, slip rings, etc.)

Composite subsystems

Anything using fiber-reinforced or carbon resins including: blades, nose cones, nacelles, etc.

Support structure

 Tower, bolts, foundation, rebar, guy wires, guy clamps, ground anchors, lifting device for tiltdown tower, etc.

Roadmapping SMART Wind Schedule

SMART Wind Consortium In-Person Meetings

Meeting		Location	Date		
	Project Meet & Greet, Initial Steering Meeting	Stevens Point, WI	June 17 and 19, 2014 In conjunction with Small Wind Conference		
1	Consortium Launch	Albany, NY	October 15-16, 2014 In conjunction with DWEA All-States Summit		
2	Mechanical Systems Subgroup	Denver, CO	November 12-14, 2014		
3	Support Structures Subgroup	Denver, CO	January 13-14, 2015		
4	Composites Subgroup	Denver, CO	February 16-18, 2015		
5	Electrical Systems Subgroup	Washington, DC	March 25-27, 2015 In conjunction with DW15 Hill Event		
6	Roadmap Prioritization	Washington, DC	March 2016		
	Finalize, Produce & Distribute Roadmap		Project Completion: May 31, 2016		

Register at <u>www.distributedwind.org/smart-wind-consortium</u>

Information Protection

- NIST protects the confidential and proprietary information about business operations and trade secrets possessed by any company or participant to the full extent of the law.
- ➤ NIST will withhold such information from disclosure pursuant to the applicable statutory authorities:
 - Freedom of Information Act (FOIA) 5 U.S.C. § 552(b)
 - Economic Espionage Act 18 U.S.C. § 1832
 - Trade Secrets Act 18 U.S.C. § 1905
- ➤ Mark <u>all</u> documents with confidential information "proprietary"
- Remember, e-mail may not be secure

Questions, discussion

http://distributedwind.org/smart-wind-faqs/

To sign up for Subgroups or more information:

www.distributedwind.org/smart-wind-sign-up/

www.distributedwind.org/events/smart-wind-consortium-launch

Register today for Oct 16 Launch Meeting – rates increase after Aug 24!