SMART Wind Consortium

Composite Subgroup: Select OEM SG Composites Info

Trudy Forsyth and Brent Summerville Feb 2015

Aeronautica Windpower

Bergey Windpower

Black Island Wind Turbines

Dakota Turbines

Endurance Wind Power

Eocycle Technologies

Northern Power Systems

Pika Energy

Primus Windpower

Ventera Wind

Xzeres Wind

OEMs in red expressed interested in Composites

Hard-to-Produce/Source Parts

towersalte stator slip is slip in the slip in the slip is slip in the slip castings

Structural Composites

Aeronautica Windpower	AW750 - 54 m	27 m	made in MI, open to new supplier; fiberglass layup, two halves, joined in a clamshell arrangement.
Aeronautica Windpower	AW750 - 47 m	23.5 m	made in India, low demand; fiberglass layup, two halves, joined in a clamshell arrangement.
Aeronautica Windpower	AW250 - 30 m	13.4 m	made in India, need new supplier; has tip brakes; fiberglass layup, two halves, joined in a clamshell
Endurance Wind Power	E4660	11 m	Made in Asia, hand-layup fiberglass clamshell designs
Endurance Wind Power	E3120	9 m	Made in Asia, hand-layup fiberglass clamshell designs
Eocycle Technologies	25 kW, Class 3	7.9 m	two fiberglass skins, single sandwich fiberglass web, foam core, fiberglass spar cap
Eocycle Technologies	25 kW, Class 2	6.2 m	two fiberglass skins, single sandwich fiberglass web, foam core, carbon fiber spar cap

Structural Composites

Dakota Turbines	DT-30	5.1 m	two fiberglass skins, carbon fiber root, foam core, carbon fiber spar caps (in-house)
Xzeres Wind	442SR	3.6 m	resin infused fiberglass, single spar, foam core
Bergey Windpower	Excel 10	3.5 m	pultrusion
Black Island Wind Turbines	HR3	2.5 m	Aircraft-grade birch laminate billet (C-lam), trimmed by CNC router
Bergey Windpower	Excel 6	3.1 m	pultrusion
Xzeres Wind	Skystream	1.8 m	compression molded fiberglass, two parts, bonded together
Bergey Windpower	Excel 1	1.3 m	pultrusion

Non-structural Composites

Non-structural composites				
Aeronautica Windpower	AW750	Nacelle	fiberglass; interested in bringing in-house	
Aeronautica Windpower	AW750	Spinner	fiberglass; interested in bringing in-house	
Aeronautica Windpower	AW250	Nacelle	currently sheet metal; interested in changing to fiberglass	
Endurance Wind Power	E3120/ E4660	Nacelle	chopped mat layup in a mold with gelcoat	
Endurance Wind Power	E3120/ E4660	Spinner	chopped mat layup in a mold with gelcoat	
Eocycle Technologies	25 kW	Nacelle	chop style with gel coat	
Dakota Turbines	DT-30	Housings	chop spray	
Xzeres Wind	442SR	Tail vane	fiberglass sandwich construction	
Xzeres Wind	442SR	Cowlings	blown fiberglass	

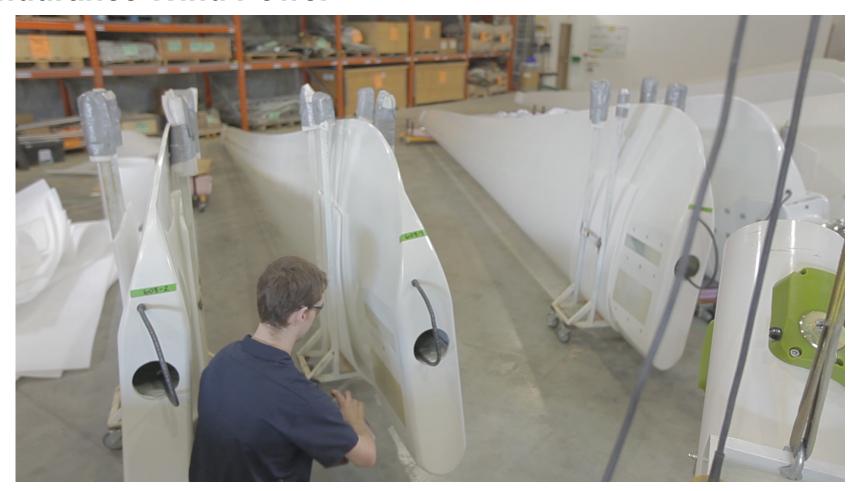
Aeronautica Windpower	AW750 - 54 m	127 m blade	made in MI, open to new supplier; fiberglass layup, two halves, joined in a clamshell arrangement.	
Aeronautica Windpower	AW750 - 47 m	23.5 m blade	made in India, low demand; fiberglass layup, two halves, joined in a clamshell arrangement.	
Aeronautica Windpower	AW750	Nacelle	fiberglass; interested in bringing in-house	
Aeronautica Windpower	AW750		fiberglass; interested in bringing in-house	
Aeronautica Windpower	AW250 - 30 m	13.4 m blade	made in India, need new supplier; has tip brakes; fiberglass layup, two halves, joined in a clamshell arrangement.	
Aeronautica Windpower			currently sheet metal; interested in changing to fiberglass	

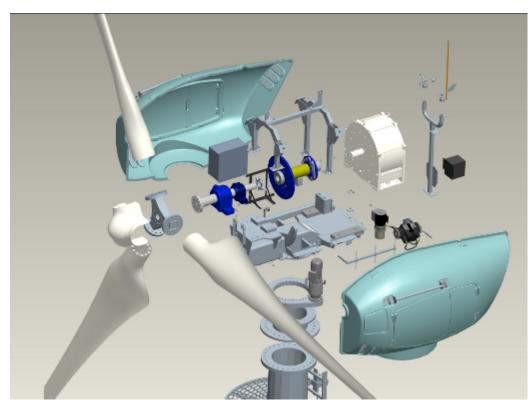
"The value in making both the blades and the nacelles in the states of course, is savings in shipping costs and hopefully turn time. The problem is going to be that the mid-scale market is a niche market, demand is not strong, and volume is low. So we're stuck with short-run type of manufacturing. But there might be some others, like Endurance, who could combine to entice a US manufacturer to make the 30 m rotor blades"

Aeronautica

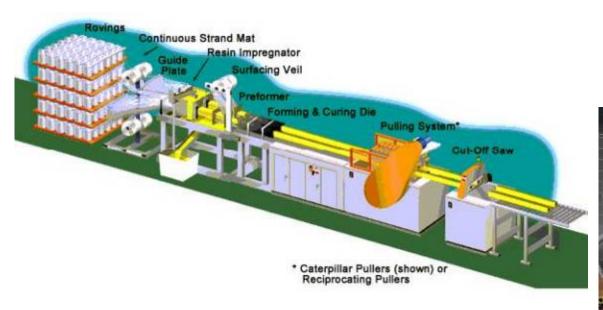
Dakota Turbines	DT-30	5.1 m blade	two fiberglass skins, carbon fiber root, foam core, carbon fiber spar caps (in-house)
Dakota Turbines	DT-30	Housings	chop spray

Dakota Turbines


"...this is the least understood part of the whole turbine manufacturing process. And because they are the engine that drives all turbines, it also should be the first and most important consideration."


Endurance Wind Power	E4660	11 m	Made in Asia, hand-layup fiberglass clamshell designs
Endurance Wind Power	E3120	9 m	Made in Asia, hand-layup fiberglass clamshell designs
Endurance Wind Power	L - 4660	Nacelle and spinner	chopped mat layup in a mold with gelcoat

Endurance Wind Power


Eocycle Technologies	25 kW, Class 3	7.9 m blade	two fiberglass skins, single sandwich fiberglass web, foam core, fiberglass spar cap
Eocycle Technologies	25 kW, Class 2	b.z m blade	two fiberglass skins, single sandwich fiberglass web, foam core, carbon fiber spar cap
Eocycle Technologies	25 kW	Nacelle	chop style with gel coat

Eocycle Technologies

Bergey Windpower	Excel 10	3.5 m blade	pultrusion
Bergey Windpower	Excel 6	3.1 m blade	pultrusion
Bergey Windpower	Excel 1	1.3 m blade	pultrusion

Bergey Windpower

Xzeres Wind	442SR	3.6 m blade	resin infused fiberglass, single spar, foam core
Xzeres Wind	442SR	Tail vane	fiberglass sandwich construction
Xzeres Wind	442SR	Nose cone	resin infused fiberglass
Xzeres Wind	442SR	Cowlings	blown fiberglass
Xzeres Wind	Skystream	1.8 m blade	compression molded fiberglass, two parts, bonded together

Xzeres Wind

"We have surveyed the US extensively for suppliers of blades and actually have switched suppliers six times since 2010; the 442SR blade was redesigned in 2011 as well. The costs (materials and labor, transportation, certification) and cyclic sales are very challenging.

We have a local partner we are currently teamed with that is working out well for our 442SR parts. We have some IP and unique tooling the we have codeveloped."

Black Island Turbines

lHR3

"...we are convinced that wooden blades are the best fit for high-reliability turbines that are sometimes sited in extreme cold: we do not see evidence of cold-embrittlement to -50C. And with today's automation, we get excellent consistency of material properties with these engineered laminates.

The success of these turbines validates these blades. The HR3 turbines operating in Antarctica for over 25 years, with very dynamic generator movement and wind exceeding 150 mph on an annual basis are fitted with these laminated wood blades."

