

SMART Wind Consortium Subgroup Virtual Meeting:

Composite Materials and Process Opportunities

Bob Bechtold

7-29-2015

Opportunities to Improve Manufacturing

Metal to Plastic Conversion... Injection Molding of Component Parts

- One method for evaluating the pros and cons of conversion is to assess the primary performance demands like:
 - System operating temperature range
 - Maximum load, stress and deflection conditions
 - Creep and fatigue constraints
 - Wear limitations (tribology) and the types of materials to which the parts will mate
 - Impact or shock-load requirements
 - $\circ~$ Chemical contact or use inside the system
 - o UV or other weatherability requirements
 - Part consolidation potential

- Material choice will impact manufacturing and assembly costs
 - $\circ~$ Molded or machined cost per unit
 - Lighter weight plastics, offer more advantages when manufacturing and assemblies are considered
 - Mold life for plastic parts is typically ten times that expected from a die cast mold for aluminum
 - Usually metal castings are near-net shape and require numerous additional steps for final precision. Plastic components are usually molded to final dimensional and finish requirements
 - Many metal parts also need either a coating (paint, oil, etc.) or anodizing for corrosion protection. Plastic materials are often inherently corrosion resistant
 - Metal parts generally can't be switched to a less-expensive metal without going through a redesign. In contrast, less-costly plastics can often use the same molds as their more-expensive predecessors

Improve Products

- •Designs consolidate parts and create additional performance features
- •Ability for more complex shapes and geometries
- •Opportunity to combine materials for enhanced features using multi-shot molding, over-molding or insert molding
- •Increased strength and durability
- •Enhanced decoration or labeling with in-mold decorating and labeling
- •Improved aesthetics
- •Ability to maintain close tolerances
- •Plastic materials and construction absorb impact and reduce noise
- •Lighter weight components for improved product performance

Reduce Costs

- •Reduced secondary operations, such as painting, machining or assembly
- Improved production consistency
- •Reduced part / product weight reduced shipping and operating costs
- •Product improvements resulting in increased customer satisfaction and decreased warranty issues
- •Streamlined manufacturing cost savings
- •Reduced scrap and waste
- Part consolidation

Streamline Manufacturing

- •Reduced labor and time, eliminating secondary operations and assembly
- •Plastic injection molding is a faster and more consistent manufacturing process than metal fabrication
- •Tools for testing materials and performance in the design phase predict performance

2015 Capabilities Overview

Injection Molding

- \circ >30 electric presses; 55 400 tons
- All production volumes
- $\circ~$ Clean room molding
- Value-added Operations
 - \circ Assembly
 - \circ Decorating
 - Kitting & Logistics
- 5-days/3-shifts per week

HARBEC Injection Molding Production

300 + Types of Polymer in Inventory

- <u>Engineering Resins</u> with superior performance characteristics
 - o ABS, Nylon, Polycarbonate
 - Bioresins: bioorigin, reclaimed, biodegradable
 - Chemical-resistant: Isoplast[™]
 - o Filled: carbon, glass, metal, mineral
 - o High-density: EcoMass[™]
 - High-heat: PEEK, Radel[™], Stanyl[™], Ultem[™]
 - Thermally-conductive: electric and dielectric
- Metals
 - <u>Xyloy</u>[™]: injection-moldable Zinc-Aluminum Alloy

Advanced Materials

Full In-house Capabilities

- o Design
- Production
 - ➤ Two Shifts
 - Large Toolmaker Team
 - Broad Subcontractor Base
- o Maintenance and repair
- Dedicated Sampling Team
 - Material Trials
 - o Fill-time and gate-freeze studies
 - $\circ~$ De-bugging and initial part run-offs

HARBEC Mold Making

Process	Materials	Tolerance (mm)	Size (cm)	Surface Finish
SLS (DTM)	Polyamide, TPE	+/- 0.25	30 x 35 x 42	Fair
DMLS (EOS)	Stainless Steel Titanium Maraging Steel Nickel-Bronze (DM20)	+/- 0.1	20 x 25 x 25	Good
CNC	<u>Plastics</u> : PEEK, Ultem, Stanyl, ABS, Nylon <u>Metals</u> : Steel, Aluminum, Brass, Copper, Titanium, Inconel, Magnesium	+/- 0.075	Open	Very Good
QMS	Engineering Resins (except high temp)	+/- 0.075	7.5 x 30 x 30	Excellent

Process	Lead Time ¹	Tool Cost	Part Cost
SLS (DTM)	1 – 2 Days	\$0	Low \$100s to \$1,000
DMLS (EOS)	1 – 2 Days	\$0	Low \$100s to \$1,000
CNC	2 – 7 Days	\$500 - \$750² (optional)	\$10 – Low \$100s
QMS	2 – 5 Weeks	\$1,500 - \$20,000	<\$1 - \$5

NOTES

¹Lead Time – assumes model file is complete and final.

²CNC Tool Cost – for fixturing (not needed for every job).

Additive Manufacturing ~~~ Tool-Less Manufacturing

- Production Quality Parts in Over 40 Different materials
 - o Filled materials
 - Engineering Polymers
 - \circ Carbon Fiber
 - \circ Fiberglass
 - \circ Kevlar®
 - o Metals
- Additive Manufacturing
 - Stereolithography(SLA)
 - Selective Laser Sintering (SLS)
 - Direct Metal Laser Sintering (DMLS)
 - Fused Deposition Modeling

HARBEC Development Support

- Part Design Optimization
 - Performance
 - o Appearance
 - o Manufacturability
 - \circ Topology
- Tool Design
 - o Tool Life vs. Tool Cost
 - Tool Cost vs. Part Cost
- Material Specification
 - Cost vs. Performance
 - Supply Risk Mitigation
 - Bioresins = Sustainability

Mastercam, 7

SolidWorks

In 2013 HARBEC achieved Carbon Neutrality and by the end of 2015 we will achieve Water Neutrality.

Our **investments** in

operational excellence result in tangible cycle time reductions, speed to market, and quality **benefits to our customers**.

Management	Tools, Policies,	Energy Constation
Management Systems & Governance	Technologies	Energy Generation, Innovation, Leadership
 ISO 9001 ISO 14001 ISO 50001/SEP Platinum Environmental Policy 	 Facility level energy management system Sustainable building design Green transportation fleet Energy efficient equipment 	 Wind Geothermal CHP/Co-Gen Energy Efficiency 60% of total energy needed at HARBEC comes from TWO On-site wind turbines

Operational Excellence

Contact

HARBEC Inc. 369 Route 104 Ontario, NY 14519-8999

585.265.0010 585.265.1306 (fax) info@harbec.com

Innovation . Prosperity . Sustainability

www.harbec.com