

National Science Foundation Industry/University Cooperative Research Center (I/UCRC)

Wind-Energy Science, Technology, and Research Industry/University Cooperative Research Center

1. What is an I/UCRC?

The Industry/University Cooperative Research Centers (I/UCRC) Program

Mission:

- To contribute to the nation's research infrastructure base by developing long-term partnerships among industry, academe and government
- To leverage NSF funds with industry to support graduate students performing industrially relevant research

Vision:

 To expand the innovation capacity of our nation's competitive workforce through partnerships between industries and universities

40 years of fostering and growing long-term partnerships among industry and academe based on shared value

I/UCRC Fast Facts – FY14 Snapshot 52 ENG Funded Centers 25 CISE Funded Centers

6 International Sites: Belgium, China, Finland, Germany, India, Russia

Program Funding

- \$20M in Program Funding (ENG, CISE)
- 6:1 Leveraging of NSF funds

Students

- Over 2000 students engaged
- 649 graduated in 2014, nearly 30% hired by members

Sustainability

Over 40 Graduated I/UCRCs remain in operation true to model

WindSTAR's I/UCRC Nucleus: A Cooperatively Defined & Funded Shared Research Portfolio

Requires trust be built in the model, and between all partners in the center.

2. What is WindSTAR?

Our vision is to become the premier research Center in the area of wind energy in the USA.

- Bring together **university and industry** researchers to conduct basic and applied research on wind energy
- Combine state-of-the-art capabilities and knowledge to advance projects relevant and of mutual interest to industry partners
- **Train students** in the advanced technologies that are important to industry partners and to have a pipeline of state-of-the-art talent flowing from academia to industry
- Foster a community for networking, interactions, and collaboration
- Conduct research that **benefits our industry members**

I/UCRC Partners and Members

Thrust Areas

Foundation and Towers

energy systems

• Modeling and costing for higher towers

Energy Storage and Grid Integration

• Solutions for more reliable, dispatchable and grid-friendly wind

Improved ground/soil assessment

3. How does it work?

WindSTAR I/UCRC - Annual Schedule

WindSTAR - Membership

- Company joins as WindStar Member \$40,000/year membership fee, or a Small Business Member - \$15,000/year (NSF supplements may decrease SB fee to \$5,000)
 - Financial Benefits:
 - 1. Enjoy 10% overhead rates on project funds
 - 2. Pooling money improves return on investment in new technology with a 15:1 leveraging of membership fee (~\$670k invested in the first year)
 - 3. Enables IAB members to team on other research projects supported by NSF and DOE

- Members Benefits:

- 1. Invited to attend semi-annual center meeting, guide project execution, and provide input and guidance to faculty and students (Cast 8 votes as an Industrial Member, 3 votes as an SB member)
- 2. Work with faculty to identify topics of interest and propose new research topics
- 3. Receive copies of semi-annual project reports
- 4. Receive non-exclusive rights to all IP generated across the center
- 5. Can also provide additional funds for special projects with exclusive rights to IP that is generated
- 6. Receive copies of manuscripts generated by faculty and students prior to publication
- 7. Receive annual resume book of participating students
- 8. Receive access to network with other members and affiliates

- Total Fund: \$634,024 (\$495,349 real dollars)
- Leveraging of \$40k Membership = 14.9:1 (11.4:1 real dollars)
- In-kind Contribution (UML + UTD): \$229,592

Funds Required to Support a Student

	STUDEN	IT ONLY	TYPICAL PROJECT		
Indirect Costs	10%	53%	10%	53%	
Faculty Salary	0	0	5,000	5,000	
TOTAL SENIOR PERSONNEL	0	0	5,000	5,000	
Number of Graduate Students	1	1	1	1	
Graduate Students (academic)	17,005	17,005	17,005	17,005	
Graduate Students (summer)	12,996	12,996	12,996	12,996	
Total Salaries & Wages	30,002	30,002	35,002	35,002	
Fringe Benefits	2,411	2,411	2,482	2,482	
Total Salaries, Wages & Fringe	32,413	32,413	37,484	37,484	
Equipment	0	0	500	500	
Travel - Domestic	0	0	1,500	1,500	
Materials & Supplies	0	0	3,000	3,000	
25% Tuition - RA Fees (\$5,000/RA)	5,000	5,000	5,000	5,000	
Total Other Direct Costs	5,000	5,000	8,000	8,000	
Total Direct Costs	37,413	37,413	47,484	47,484	
MTDC	32,413	32,413	41,984	41,984	
Indirect Costs	3,241	17,179	4,198	22,252	
Total Direct & Indirect Costs	\$40,654	\$54,592	\$51,683	\$69,736	
I/UCRC BENEFIT (University Cor	\$13,938		\$18,053		

• Center Savings in Year 1: **\$138,675**

- E2-14: Extremun Seeking Control for Wind Turbine Power Maximization
- D1-14: Large Area Turbine Blade Inspection
- A3-14: Failure Prevention via Self-healing Materials
- A1-14: Design for Composite Wind Turbine Blade Manufacturing
- E3-14: Two-layer Optimization for Maximizing Wind Farm Power Output
- A1-15 Enhancing Epoxy Infusion in Carbon Fiber Composites
- A2-15 Evaluation of Leading Edge Erosion Protection Systems and Their Effects on Wind Turbine Power Production
- B1-15 Low-Cost Wind Turbine Blade Structural Health Monitoring

Failure Prevention via Self-healing Materials

Scope:

- Embed self-healing capsules for improved fatigue life in fiber-reinforced materials
- Increase turbine blade reliability and extend service life while minimizing manual inspection and intervention

Specific Objectives:

- Develop encapsulated self-healing solvent or epoxy-amine chemistries applicable to blade material systems
- Apply self-healing microcapsule based technology to composite specimens
 manufactured using VARTM
- Examine mechanical properties of manufactured samples using quasi-static fracture and fatigue tests and characterize healing efficiency
- Compute the scope for materials reduction based on material fatigue models

Could target selfhealing to critical fatigue locations to further minimize cost Design for Composite Wind Turbine Blade Manufacturing

Problem Statement (2/5):

 Depending on the mechanical behavior of the fabric, i.e. inplane shear stiffness and bending stiffness, localized defects in the form of in-plane waviness and out-of-plane wrinkling can occur.

Problem Statement (3/5):

 Both types of defects can compromise the load path through the structure and lead to reduced stiffness and reduced strength.

Zoomed-in view of double-bias fabric showing slight in-plane waviness of yarns

Problem Statement (4/5):

• Example failure mechanisms

Failure mechanism for (a) high and (b) low wave angle

Problem Statement (5/5):

- Need access to an easy-to-use virtual design tool
 - Considers the mechanical behavior of the fabric
 - Valuable tool to assist in the design of the blade manufacturing process
 - Reduce the potential for defects to develop during the manufacturing process
- If defects cannot be eliminated,
 - at least design the process to push the defects into an area of the blade that is of little importance to the structural health of the blade.

- Pooling money improves return on investment in new technology with a ~15:1 leveraging of membership fee and only 10% overhead rate (50-100% is typical)
- 2. Industry members direct the selection and execution of research topics across a broad range of researchers and facilities at multiple universities
- 3. Sharing risk at an early stage in research is a good business strategy
- 4. Royalty-free licenses to technology generated through the Center and pre-publication access to research results
- 5. The Center allows us to pursue other sources of funding
- 6. Student engagement resume book and access to graduates who are well trained in the field of wind energy
- 7. Strategic networking and synergistic cooperation opportunities with complementary *and* competitor companies

Timeline for Joining WindSTAR

- 1. Attend the next WindSTAR Center IAB Meeting to define research topics with all potential industry members.
 - January at University of Texas Dallas
 - June at UMass Lowell
- 2. Decide whether becoming a member makes sense for your company and provide a membership fee and sign the membership agreement.
- 3. WindSTAR I/UCRC will execute its next set of research projects starting September 2015.

www.uml.edu/WindSTAR

For more information, contact:

Center Director: Christopher Niezrecki, Ph.D. University of Massachusetts Lowell E-mail: <u>Christopher_Niezrecki@uml.edu</u> Phone: 978-934-2963 Site Director: Mario A. Rotea, Ph.D. University of Texas at Dallas E-mail: <u>Rotea@utdallas.edu</u> Phone: 972-883-2720

Assistant Director for Operations: Patrick Drane University of Massachusetts Lowell E-mail: <u>Patrick_Drane@uml.edu</u> Phone: 978-934-2996

For a WindSTAR reference, contact:

Industrial Advisory Board Chair: Justin Johnson EDP Renewables - Director, Performance Management E-mail: Justin.Johnson@edpr.com Phone: 713-265-0255

Industrial Advisory Board Member: 🕦

Director, Operations Engineering

E-mail: paul.haberlein@patternenergy.com

Phone: 713-308-4213

Industrial Advisory Board Co-Chair: Stephen B. Johnson

GE - Senior Engr. Manager, Wind Advanced Technologies E-mail: <u>Stephen.b.johnson@ge.com</u> Phone: 864-254-2164

Industrial Advisory Board Former Chair: Stephen C. Nolet, Ph.D.

TPI Composites, Inc. - Principal Engineer, Senior Director E-mail: <u>snolet@tpicomposites.com</u>

Phone: 401-247-4009

Paul Haberlein

Facilitating Industry by Engineering, Roadmapping and Science for the Composites Industry

National Institute of Standards and Technology U.S. Department of Commerce

Industry Participation

Companies Providing Letters of Interest for Proposal

Авкета	ATK	Aurora		BOWMAN	Performance Quality Cost Composite Sourcing Solutions	CW Compositesworld	Greative Composites, Ltd
CUSTON COMPOSITE	CYTEC	Date Chemical Company, Inc.	ecovative	fives	Ford	FRONT STREET SHIPYARD	88
GRACO		MODGDON	Honeywell	KENWAY	Kubota	LOCKHEED MARTIN	
The Maine Composites Allance	Maine Marine Composites	MAINE WIND INDUSTRY INITIATIVE	shipes			OWENS	/epuasan
	Quatro	SIEMENS	Spaulding	TECH	Thermo SCIENTIFIC	tpi	tsi
TURCOTTE YACHT DESIGN,LLC	VISTEX	Y WARRIOR					

University / Non-Profit / Government Participation

YOUR RESOURCE FOR MANUFACTURING GREATNESS

IOWA STATE UNIVERSITY

OF SCIENCE AND TECHNOLOGY

University of New Hampshire

22

SITYOF

OAK RIDGE National Laboratory

CENTER FOR ECONOMIC GROWTH

anything's possible™

Supply Chain and Life Cycle

