

### Overview

- Importance of rotor design tools with an emphasis on aero-/fluid-dynamics.
- Tools:
  - 2D Airfoil Analysis Tools
  - 3D Blade/Rotor Analysis Tools

### Key Issues - I

- Rotor design space is constrained by tools used in design and analysis of airfoil section shapes, blades, and rotors. These tools may limit innovation.
- Innovation is key to long-term success of wind energy:
  - "Incrementalism is innovation's worst enemy! We don't want continuous improvement, we want radical change." Sam Walton, Walmart founder
  - "Innovation is the only answer, there's no easy way around." Jim McNerney, Boeing's former CEO

CUCDAVIS COLLEGE OF ENGINEERING



Tools must be able to capture or model:

- Airfoil/blade boundary layer transition
- Airfoil/blade surface roughness
- · Airfoil/blade flow separation
- · Airfoil/blade flow unsteadiness
- Airfoil/blade flow modifiers (VGs, stall strips, trailing edge tabs, etc)
- Inflow disturbances (turbulence)

# Key Issues - III

- Depending on size, difficult to impossible to test wind turbine blade/rotor in wind tunnel at conditions approaching/ matching full scale.
- As a result, we are often faced with jump from computational design and analysis to full-scale field testing without intermediate step. Field-based trial & error testing can be frustrating and costly





# XFOIL Airfoil aerodynamic analysis code developed by Mark Drela Lift and drag prediction up to stall Automated drag polar computation Airfoil blending capability Interactive airfoil re-design from user input Coupled viscous/inviscid interaction Inviscid linear-vorticity stream function panel method Integral boundary layer formulation with e<sup>N</sup> transition criterion Specify fixed or free transition Minimal computational overhead Plus: Well validated. Zero cost Minus: Steady flow solver. Single element airfoils only

CUC DAVIS COLLEGE OF ENGINEERING



### MSES

- Multi-element airfoil aerodynamic analysis code developed by Mark Drela
- · Coupled viscous-inviscid method
  - Euler equations, full potential flow, or hybrid of both
    - · Inviscid, compressible
  - Integral boundary layer equations
  - Transition model e<sup>n</sup>. Manual trip specification available
- Multiple options for far field boundary conditions
  - Infinite, solid wall
- Plus:
  - Well validated. Multi-element airfoil capability. But no confluent boundary layer model. Zero cost for academic use.
- Minus:
- Steady flow solver. Costly for non-academic use. Solution process
   often not very robust.











### FAST

- NREL's primary computer aided engineering tool for simulating the coupled dynamic response of wind turbines.
  - Simulates one turbine at a time.
  - Simulates only horizontal axis turbines.
- Well established in the wind power community.
- Independently evaluated and certified. Low computational cost:
  - A 10 minute long FAST simulation can be run in ~3 minutes on a single processor.

https://nwtc.nrel.gov/FAST https://nwtc.nrel.gov/SimulatorCertification

CUCDAVIS COLLEGE OF ENGINEERING



Burton et al, *Wind Energy Handbook*, 2nd ed., Wiley, 2011





### **OVERFLOW2 - 3-D CFD** Developed and maintained by Pieter Buning at NASA Langley 3-D Unsteady Reynolds-averaged Navier-Stokes (URANS) - Numerical schemes High order schemes (up to 6<sup>th</sup>) · Central, Roe upwind, TVD, HLLC, HLLE Full multigrid, WENO, MUSCL Time advancement schemes · Explicit, Newton sub-iterations, dual-time stepping Turbulence models Spalart-Allmaras, Menter's k-ω SST, SA-DES, wall functions γ-Re<sub>θt</sub>-SA, Langtry-Menter transition models Rotor Dynamics - Prescribed or 6-DOF solid body dynamics - Rotational source term to model rotation Chimera/overset grid topology UCDAVIS COLLEGE OF ENGINEERING















## Conclusions

- As we explore the design and installation of turbines with more advanced rotor configurations and/or turbines in more complex environments, higher-order computational methodologies must be considered.
  - On the plus side, these design and analysis methods allow for simulation of more complex rotor configurations in more complex environments
  - On the minus side, these methods require significantly more computational resources and more setup and solution time.

UCDAVIS COLLEGE OF ENGINEERING