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Overview

* Importance of rotor design tools with an emphasis
on aero-/fluid-dynamics.

* Tools:
— 2D Airfoil Analysis Tools
— 3D Blade/Rotor Analysis Tools
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Key Issues - |

* Rotor design space is constrained by tools used in
design and analysis of airfoil section shapes,
blades, and rotors. These tools may limit
innovation.

* Innovation is key to long-term success of wind
energy:

— "Incrementalism is innovation's worst enemy! We don't
want continuous improvement, we want radical change.
Sam Walton, Walmart founder

— "Innovation is the only answer, there's no easy way
around." Jim McNerney, Boeing’s former CEO
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Key Issues - Il

Tools must be able to capture or model:
« Airfoil/blade boundary layer transition
« Airfoil/blade surface roughness

« Airfoil/blade flow separation

« Airfoil/blade flow unsteadiness

« Airfoil/blade flow modifiers (VGs, stall strips,
trailing edge tabs, etc)

* Inflow disturbances (turbulence)

cm.u:cﬁmm

10/28/15



Key Issues - Il

+ Depending on size, difficult to impossible to test wind turbine
blade/rotor in wind tunnel at conditions approaching/
matching full scale.

» As aresult, we are often faced with jump from computational
design and analysis to full-scale field testing without
intermediate step. Field-based trial & error testing can be
frustrating and costly

» FoxTrOT : BY BILL AMEND -

Computational Aero-/Fluid-Dynamic Tools

2D Airfoil Analysis Tools
— XFOIL
— MSES
— OVERFLOW - 2D
» 3D Blade/Rotor Analysis Tools
— WT_Perf
— FAST
— OVERFLOW - 3D
— SOWFA
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XFOIL

+ Airfoil aerodynamic analysis code developed by Mark Drela

— Lift and drag prediction up to stall
— Automated drag polar computation
— Airfoil blending capability

— Interactive airfoil re-design from user input
» Coupled viscous/inviscid interaction

— Inviscid linear-vorticity stream function panel method

— Integral boundary layer formulation with eV transition criterion

» Specify fixed or free transition
* Minimal computational overhead

e Plus:
— Well validated. Zero cost

* Minus:

— Steady flow solver. Single element airfoils only

XFOIL- Free vs Fixed Transition

« Lift and drag prediction using eV criteria (free) and fixed

transition location
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MSES

Multi-element airfoil aerodynamic analysis code developed by
Mark Drela
Coupled viscous-inviscid method

— Euler equations, full potential flow, or hybrid of both

* Inviscid, compressible

— Integral boundary layer equations

— Transition model - e". Manual trip specification available

Multiple options for far field boundary conditions

— Infinite, solid wall

Plus:

— Well validated. Multi-element airfoil capability. But no confluent
boundary layer model. Zero cost for academic use.

Minus:

— Steady flow solver. Costly for non-academic use. Solution process
often not very robust.
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MSES Multi-Element Airfoil AnaIyS|s
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OVERFLOW2 - 2-D CFD

+ Airfoils from NREL 5-MW turbine analyzed using OVERFLOW
2.2e
— Spatially discretized using 6% order Euler central differencing
— Beam-Warming pentadiagonal scheme
— Matrix Dissipation

— Langtry-Menter y-Re transition model with Menter's SST k-w
turbulence model

+ DU-93-W-210

— Re,=8.14 x 10° Al

— 21% thick

+ DU-99-W-350
~ Re,=5.23x 108 <>
— 35% thick
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NREL Airfoil Prediction

+ Lift and drag prediction from OVERFLOW-2, comparison to
XFOIL results shown
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WT_ Perf

NWTC Design Code (no longer officially supported)
— Developed by Marshall L. Buhl Jr. at NREL
— Derived from the PROP code (Oregon State)

Blade element and momentum theory (BEM) code
— lterates on axial and tangential induction factors

— Assumes ideal 2-D flow with no spanwise interaction

— Steady-state

Horizontal axis wind turbines (HAWT) performance analysis

Basic and fast geometry descriptions
* Number of blades, radius, hub size, coning, yaw, tilt
» Sl or English units

Hub and Prandtl-tip loss models

2-D airfoil performance tables are required

Fast parametric sweeps on blade pitch, wind speed/TSR, and rotor RPM
Outputs rotor power, torque, thrust, C,, root flap-bending moment
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FAST

NREL's primary computer aided
engineering tool for simulating the
coupled dynamic response of wind
turbines.

— Simulates one turbine at a time.

— Simulates only horizontal axis

turbines.

*  Well established in the wind power

community.
* Independently evaluated and

certified. Low computational cost:

— A 10 minute long FAST
simulation can be run in ~3

minutes on a single processor.

https://nwtc.nrel.gov/FAST

https://nwtc.nrel.gov/SimulatorCertification
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Burton et al, Wind Energy Handbook,
2nd ed., Wiley, 2011

Burton et al, Wind Energy Handbook,
2nd ed., \Nilpy, 2011
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Structural dynamics are modeled
as a combination of modal
dynamics and multi-body
dynamics.
— Multi-body dynamics are
calculated using Kane’s method.
Aerodynamic loading is modeled
using blade element-momentum
theory.

Can interface with TurbSim for
statistically accurate, stochastic,
full-field turbulent wind inflow.

Can interface with turbine
controllers modeled in Simulink.
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Example: NREL 5-MW turbine in
turbulent wind
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» FAST can output time series data for 286 Simulation
parameters, including the four shown here.

coumsor-_lu

OVERFLOW?2 - 3-D CFD

* Developed and maintained by Pieter Buning at NASA Langley
» 3-D Unsteady Reynolds-averaged Navier-Stokes (URANS)
— Numerical schemes
+ High order schemes (up to 6%)
» Central, Roe upwind, TVD, HLLC, HLLE
« Full multigrid, WENO, MUSCL

— Time advancement schemes
» Explicit, Newton sub-iterations, dual-time stepping

— Turbulence models
» Spalart-Allmaras, Menter’s k-w SST, SA-DES, wall functions

* y-Reg-SA, Langtry-Menter transition models

* Rotor Dynamics
— Prescribed or 6-DOF solid body dynamics
— Rotational source term to model rotation

» Chimera/overset grid topology
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* NREL's Simulator for Wind Farm
1m’ Applications is a windplant simulation
“\3:".5‘.&_‘_ - tOOI.

» The flow field is modeled using a Large
Eddy Simulation (LES) methodology
based on the OpenFOAM CFD toolbox.

 Structural dynamics and aerodynamics of

each turbine are modeled by a modified
version of FAST.

— Due to high Reynolds number flow, it would
‘ be impractical to model the turbine
ar. aerodynamics using LES.

» LES flow field model is coupled to FAST
turbine model using an actuator line
model.

Churchfield et al, 2012

 COLLEGE OF ENGINEERING

SOWFA

» Can model several turbines and their interactions.
— Turbine to turbine wake interactions.
— Plant level control systems.
— Wind events propagating through the wind farm.

« Computationally expensive.

— The 100s long, 2 turbine simulation shown below took

5,888 processor hours to complete.

Instantaneous Velocity Averaged Velocity

Baseline

Fleming et al., 2013
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Example: 48 turbine simulation of
the Lillgrund offshore wind farm
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Churchfield et al, Journal of Turbulence, 2012

Conclusions

» As we explore the design and installation of
turbines with more advanced rotor configurations
and/or turbines in more complex environments,
higher-order computational methodologies must be
considered.

— On the plus side, these design and analysis methods

allow for simulation of more complex rotor configurations
in more complex environments

— On the minus side, these methods require significantly
more computational resources and more setup and
solution time.
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