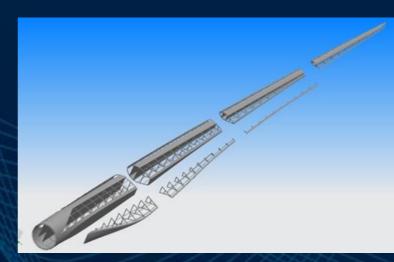
Practical Expertise Exceptional Design

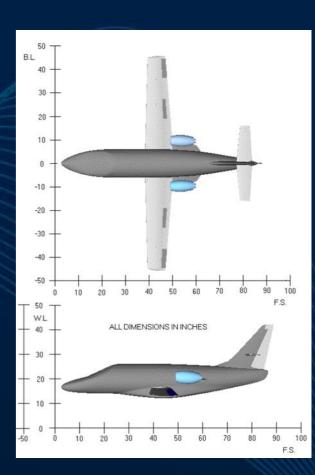
WETZEL ENGINEERING

Small Turbine Tower Design AWEA vs IEC 61400-2 vs TIA-222

Kyle K. Wetzel, PhD CTO, Wetzel Engineering


November 18, 2015 SMART Wind Composites Virtual Meeting on Support Structures

WETZEL


WETZEL ENGINEERING

- Engineering Solutions Developer
 - Clients on 4 continents
 - Wind Energy
 - > 50 custom blade designs
 - > 20,000 blades operating
 - Aviation
 - > Towers
- Engineering services to
 - ➢ OEMs
 - Owners and Operators
 - Insurance Companies
 - > And others...

WETZEL

Purpose of Standards vs Purpose of Engineering

- Purposes of Engineering
 - Ensure no failures
 - Ensure most cost-effective Design
- Purpose of Standards
 - Define "industry accepted" MINIMUM set of requirements

- AWEA Small Turbine Standard
 - Omits Towers
 - Flawed belief that towers are generally not critical to turbine response for small machines
 - Puzzling oversight as to how the industry is to ensure that towers have been minimally engineered

WETZEL ENGINEERING

- IEC 61400-2
 - Wind industry standard methods of estimating loads
 - Includes Tower Engineering
 - Does not necessarily conform to requirements of the IBC

- TIA-222-G-4-2014
 - Does not reflect acceptance or input of wind turbine engineers – reflects need to stamp drawings to satisfy US building code enforcement bodies (IBC)
 - Over-reach by non-industry standardwriting body with little to no understanding of wind turbine engineering
 - Loads calculations are inconsistent with standards of the wind industry
 - Poor Fatigue Analysis Methods
- WETZEL ENGINEERING

- TIA-222-G-4-2014
 - Claims to be "derived from" IEC 61400-2, but errors in derivation are significant
 - "Turbine shall be modeled as a mass and an effective projected area" – misses key characteristics of rotor aerodynamics and dynamics that are important for estimating loads – treats rotor as an antenna
 - This is a completely unacceptable method of estimating loads

ENGINEERING

- TIA-222-G-4-2014
 - Design Load Condition 49m/s (110mph) 50-year return, 3-second gust at 10m height, exposure Category C, Topo Category 1, Extreme Wind Condition using the appropriate TIA Importance Factor
 - Standard implies this is conservative approach in lieu of performing fatigue
 - Notes that 110mph requirement is independent of IEC Wind Class

WETZEL ENGINEERING

- TIA-222-G-4-2014
- Loads Calculation

WETZEL

ENGINEERING

1.
$$1.2 D + 1.0 D_g + 1.6 W_o$$

2. $0.9 D + 1.0 D_g + 1.6 W_o$
3. $1.2 D + 1.0 D_g + 1.0 D_i + 1.0 W_i + 1.0 T_i$
4. $1.2 D + 1.0 D_g + 1.0 E$
5. $0.9 D + 1.0 D_g + 1.0 E$

- D = dead load of structure and appurtenances, excluding guy
- D_g = dead load of guy assemblies;
- D_i = weight of ice due to factored ice thickness;
- E = earthquake load;
- T_i = load effects due to temperature;
- W_o = wind load without ice;

W_i = concurrent wind load with factored ice thickness.

• TIA-222-G-4-2014

WETZEL

ENGINEERING

- 110mph requirement can be nonconservative as a 50-year, 3-second extreme
- Previous work by WEI for Anemergonics dynamic sims (FAST) with modified inflow

	Wind Class \rightarrow		Modified	Modified	S
			2	3	
Reference Wind Speed	V_{ref}	m/s	42	36	32
Average Hub-Height Wind Speed	V_{avg}	m/s	8.5	7.5	7.5
Mean Turbulence Intensity	I ₁₅		14%	14%	14%
Cut-in Wind Speed	Vin	m/s	4	4	4
Cut-out Wind Speed	V _{out}	m/s	NA	NA	NA
Extreme Hub-Height Wind Speed	Ve	m/s	65	54	49
		mph	144	120	109

Compared to TIA steady inflow with direction change

- TIA-222-G-4-2014
 - 110mph requirement can be nonconservative as a 50-year, 3-second extreme
 - Previous work by WEI for Anemergonics
 - Load estimations were very sensitive to the particular turbine configuration – dynamics of the tower, height of the tower
 - Generally OK match on tower base loads
 - TIA inflow generally underestimated tower top bending moments by as much as 30%

WETZEL ENGINEERING

- TIA-222-G-4-2014
 - TIA-222-G omits fatigue
 - Addendum 4 recognizes fatigue is important for wind turbines
 - Method of Calculating fatigue loads is obscure and based on the idea of the rotor diameter as a disk with a constant 30mph wind
 - Accounts for some stress concentrations using handbook methods

WETZEL ENGINEERING

Recommendation

- Loads (Static & Fatigue-Equivalent)
 - Calculate Loads per IEC 61400-2 (or better yet 61400-1) using the applicable IEC Load Case and the TIA-prescribed inflow and terrain conditions
 - Calculate Loads per TIA
 - Use the most conservative set

Recommendation

• Strength & Fatigue

- Calculate stresses and fatigue damage per IEC 61400-2 (or GL guidelines)
- Calculate stresses and fatigue per TIA-222-G-4
- Go with the more conservative result
 - If there is a significant conservative discrepancy from TIA, then ask for an exception based on sound engineering
 - Engineers stamping drawings have leeway to use professional judgment – standards simply provide cover

WETZEL ENGINEERING

Recommendation

Options by DWEA

- Secure acceptance by IBC for IEC 61400-2
- Include towers in AWEA STS and secure acceptance by IBC for AWEA STS
- Amend TIA-222-G-4 to include options for methods of loads, strength, and fatigue analysis more consistent with IEC 61400-2

Wetzel Engineering, Inc.

Office 821 Grand Ave Pkwy #410 Pflugerville (Austin), TX 78660

Plant 3914 Gattis School Rd #103 Round Rock, TX

512-989-9194

www.WetzelEngineering.com

info@WetzelEngineering.com

Wetzel Engineering, Inc., Proprietary Information. Maintain in Confidence. Copyright © 2015 Wetzel Engineering, Inc. All Rights Reserved. WETZEL