

Boosting Profits with Wind Power Savings

How commercial operations in the dairy, farming, and industrial industries benefit from making their own electricity with the wind

Why Wind Power?

Saving Money with Wind Power

If a business is in a site with good wind, investing in a turbine is a smart idea.

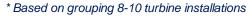
For an NPS 100 wind turbine, this means:

- Immediate tax credit opportunity:
 - > almost \$100K over 1-5 years
- Savings from electricity bill every year:
 - depending on wind and utility rates, savings range from \$15,000 to \$37,000 per year (year 1 value)

50% lifetime savings directly boost profits

Non-financial Benefits of Wind Power

- Stable and more predictable cost of power
- Energy independence / Self Reliance
- Small Footprint
- "Green" Values Made Visible marketing value
- Educational value local kids and communities learn about renewables



Why Wind Now? (from 10 years ago)

- NPS 100 Reduced Installed Cost (TIC)
 - \rightarrow \$500,000+ \longrightarrow as low as \$350,000*
 - > 30%-40% reduction in cost
- ❖ NPS 100 Increased Production (AEP)
 - > 21 meter rotor \longrightarrow 24 meter rotor
 - > 183,000 kWh/yr --- 240,000 kWh/yr**
 - > Over 30% improvement in performance

productivity improvements, wind power makes economic sense, even with reduced incentives...

With these powerful cost and

^{**} Based on 5.5 m/s wind regime

About Northern Power

Northern Power Systems – Company Overview

Providing distributed energy & renewable solutions globally for over 40 years

Based in Barre, Vermont, USA

Offices in:

Boston • Italy • United Kingdom • Switzerland

Distributed Wind Turbines

100 kW, 60 kW 700+ plus turbines with over 16 million run hours 98% availability

MW Scale Wind Technology

Partnered with WEG
Over 100MW installed

Integrated design and controls

For microgrid applications >25 projects globally

Power Converter Systems

500 kVA − 2.5 MVA units
FlexPhaseTM technology

Turnkey Energy Storage

ESS site controller BMS integration Monitoring & data acquisition

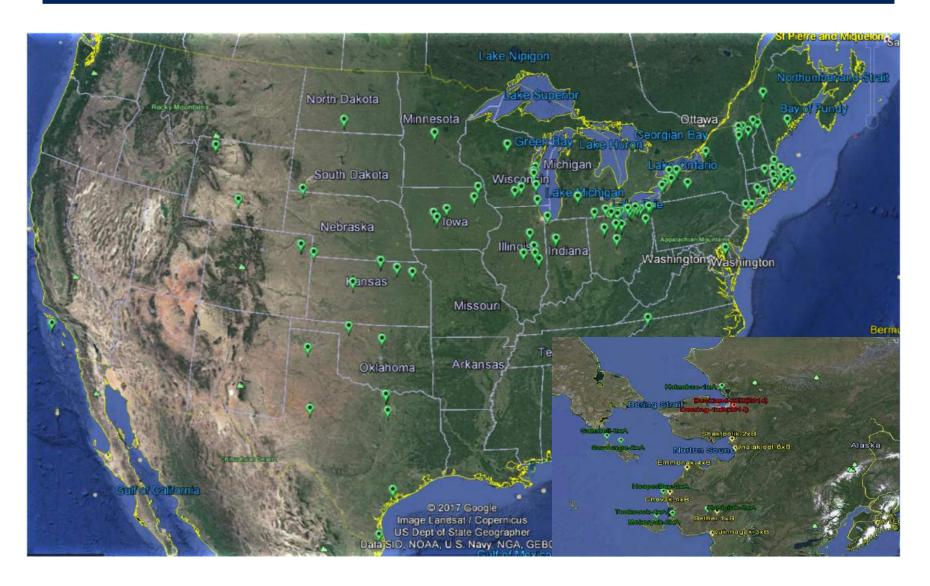
Business core

Leveraging history into distributed solutions

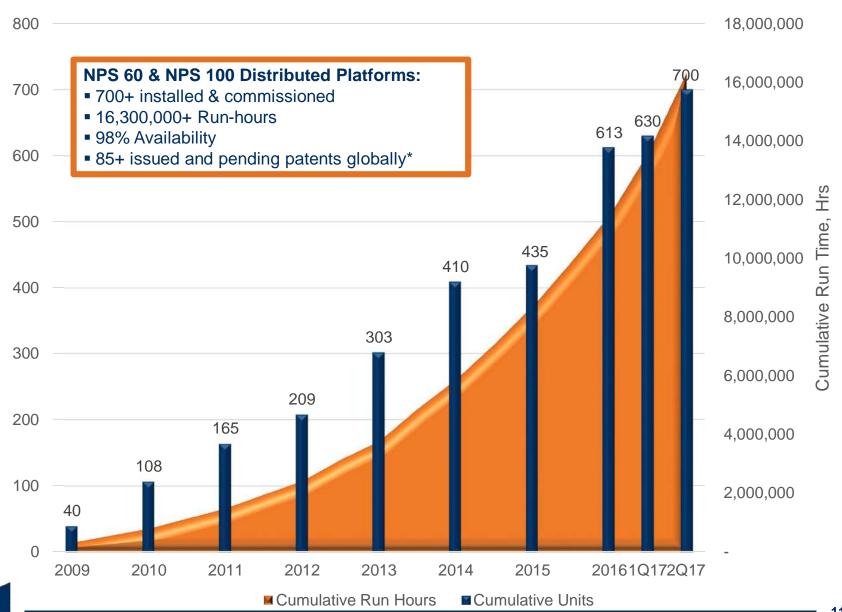
Why Northern Power?

Proven Track-Record of Performance and Safety

Engineered and assembled in America

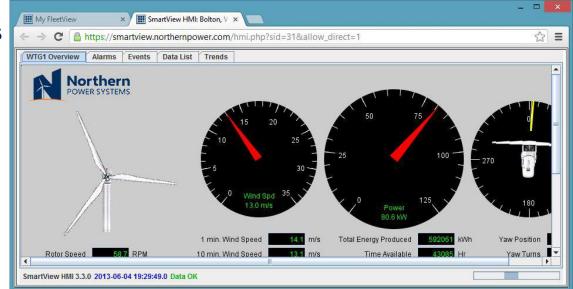

NPS Global Footprint

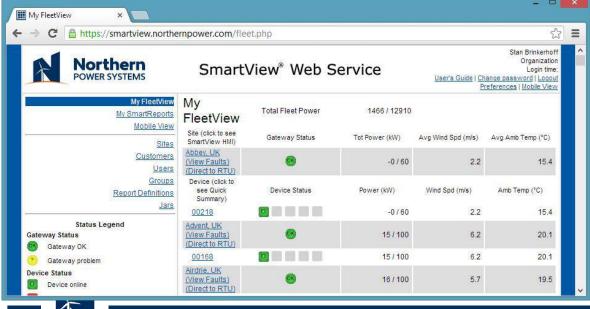
Over 700 units operational w/24/7 monitoring, another 200 in development.....



100's of NPS 100 in the United States

NPS Wind Turbine Deployment & Run Hours

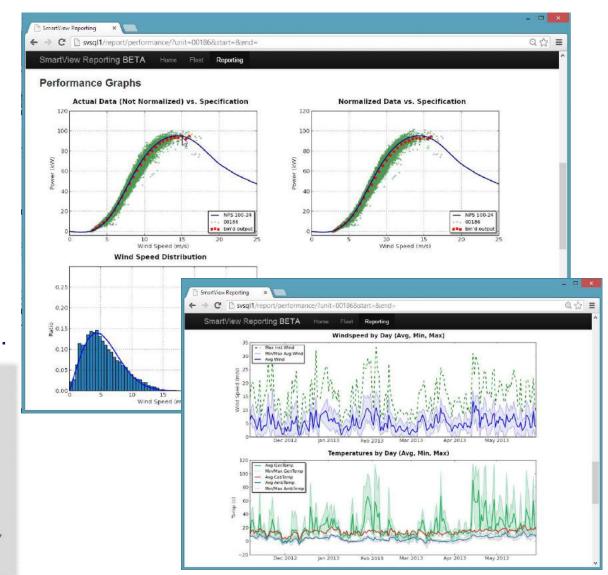




SmartView: FleetView

Monitoring and Remote Access

- Customer and internal facing fleet performance overview.
- Central web platform 24/7/365
- Encrypted Cloud based architecture.



SmartView: Performance Analytics

- Dynamic single unit and aggregate fleet performance toolset.
- Customizable and scalable.
- Integrated with ERP, Fleet Management, and other databases.

95% of customers have rated the Northern Service Team as either "Very Knowledgeable" or "Extremely Knowledgeable"

Source: Jan 2017 NPS customer survey

Distributed Wind Power – not just for Big Wind Farms

Commercial & Industrial

Phoenix Press Connecticut, USA

Bolton Valley Vermont, USA

Hyannis Country Gardens
Mass. USA

Triad Recycling & Energy New York, USA

Municipalities

Village of Cascade Water Treatment Facility Wisconsin, USA

Energy Park, Hempstead New York, USA

Schools and Universities

Medford High School Mass. USA

Cloud County Community College, Kansas, USA

Camden Hills HS Maine, USA

Alfred State College New York, USA

Wind Power – Isolated Village Electrification

Island & Micro-Grids

Water Pumping

Large Ag, Commercial and Industrial Applications

Large Ag / Commercial & Industrial Applications

Large / Commercial Agriculture

- > Dairy farms with 500+ head
- > Hog & Chicken Farms
- Dairy processing facilities
- Meat Processing
- Feed Lots
- > Farms with large electricity-based processes (e.g. drying)
- > Vineyards
- Nursery businesses

Commercial &Industrial Applications

- > Telecommunications Companies
- Recycling Facilities
- Printing Operations
- Utility
- Manufacturing

Farm-based 100kW turbines

Northern Power has over 200 farm/ag-based turbines worldwide

- ❖ ~100 in the UK
- ❖ ~100 in Italy
- ❖ ~20 in the US

Burco Farms, IA

Blairmains Farms, Scotland

Audets / Blue Spruce Farm, VT

KS Installations Statistics

- ❖ 6x NPS 100kW Turbines (Ag, Educational, C&I, WWTF)
- More than 5,200,000 kW-Hrs. (total lifetime) delivered to the customers load
- ❖ More than 260,000 accumulated Run Time Hours

***** 93%-94%

Availability

* 3x in 2010

❖ 1x in 2012

❖ 1x in 2014

* 1x in 2016

***** 32%-36%

Capacity

Factor (CF)

in some

locations

CASE STUDY: GBT Communications (Rush Ctr.- KS)

Location

Rush Center, KS

Project

distributed wind generation system at a commercial business, net metered on a monthly basis

Model

NPS 100-21 wind turbine, 37, meter tower

Year Commissioned:

2014

Average wind speed

6.26 m/s

Annual Energy Production

257,000 kWh (2016)

Annual Carbon Offset

Saved carbon emissions equivalent to burning 209,000 lbs of coal

Source: https://www.epa.gov/energy/greenhousegas-equivalencies-calculator **Electricity** is **critical** to Golden Belt's business **operations**. The central office and TV head-end distribute services 24 hours a day, 7 days a week. All of these electronics generate so much heat that air conditioners are required to keep the systems and surrounding office cool. **Electricity also represents a major expense item, impacting bottom line profits every month.**

Performance:

* Monthly bills:

\$4,000-5,000 to as low at **\$1,100 now!**

❖ 1st half 2017 = 145,500 kilowatt-hours

over **\$19,000** worth of energy (valued at 13.6 cents)

 Yearly savings: approx. \$30,000 per year in utility bill savings

Hedging against rising costs

2014 rate: 11.3 cents/kWh

2016 rate: 13.6 cents/kWh (20%)

"The reason we built the turbine was to save on expenses, but also take advantage of the very predictable wind patterns in Kansas."

Beau Rebel Golden Belt Communications

CASE STUDY: KS / CO Ag and Dairy Business

Location

Yuma, CO (2 units) St. Francis, KS (1 unit)

Project

Net metered distributed wind generation system at two farm locations

Model

3 NPS 100-24 wind turbines, 37 meter tower

Year Commissioned: 2016

Average wind speed

6.38 m/s (14.3 mph) 6.49 m/s (14.5 mph) 5.92 m/s (13.24 mph)

Annual Energy Production

750,000+ kWh (extrapolated from 1st half of 2017 data)

Annual Carbon Offset

Saved carbon emissions equivalent to burning over 298,000 lbs. of coal

Source

https://www.epa.gov/energy/gree nhouse-gas-equivalenciescalculator An agricultural businessman with dairy and cattle operations in two locations. **Electricity** is one of the elements that make a difference to the **bottom line**.

Wind power was particularly attractive as a renewable energy choice because it **required minimal land** (cattle can graze immediately around the 8' Diameter foundation pad, and because wind turbines do not need regular cleaning – which requires the use of scarce and valuable water – **to keep producing at efficient levels**.

Performance:

- 1st half 2017 = 395,000 kilowatt-hours / approx. \$40,000 worth of energy (valued at 10 cents)
- Yearly savings: approx. \$80,000 per year in utility bill savings

"Dairies work 24 hours a day, and they use energy that whole time."

Owner, Confidential Client

CASE STUDY: Miller Sonshine Acres Dairy Farm (NY)

Location Corfu, NY

Project

Net metered distributed wind generation system at a farm

Model

2 NPS 100-24 wind turbines, 37-meter towers

Year Commissioned:

2014 and 2016

Average wind speed

5.02 m/s (11.3 mph) and 5.44 m/s (12.2 mph)

Annual Energy Production

360,000+ kWh

Annual Carbon Offset

Saved carbon emissions equivalent to burning 270,000 lbs. of coal

Source:

https://www.epa.gov/energy/ greenhouse-gasequivalencies-calculator When Dan Miller installed his first 100kW turbine, Miller Sonshine Acres Farm was a bustling dairy operation with over **2,800 milking cows**. His electricity bills were \$6,000 per month. He knew that if he wanted his business to be sustainable, he would have to find a way to control costs now and well into the future.

Performance:

- ❖ Monthly bills: from \$6,000+ to approx. \$2,000
- 1st half 2017 = 180,00 kilowatt-hours / over \$35,000 worth of energy (valued at 10 cents)
- ❖ Yearly savings: approx. \$35,000 per year in utility bill savings

"I'm concerned about climate change and see the value in renewable energy, but the bottom line is, I thought I could save some money. This has proven to be a great way to do that."

Dan Miller, Owner, Sonshine Acres Farm

Energy on a Dairy Farm

A typical dairy farm consumes between 800 and 1,200 kilowatt hours (kWh) per cow every year.

"With the energy cost savings that result from the use of these [renewable] technologies... farmers will then be able to sustain and expand their agricultural operations over the long term, and have confidence in handing it off to the next generation."

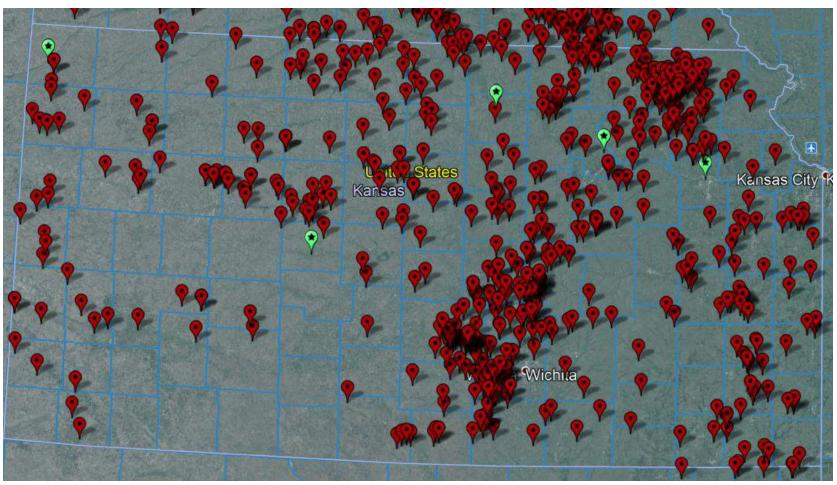
Renewable Energy World Magazine

July 6, 2017, "Congress Introduces Bill to Catalyze Economic Development for Rural and Agricultural Communities through Energy Investment"

Electricity helps dairy farms be more productive:

- Milk cooling
- Water heating
- Vacuum pumps
- Ventilation

Match the Rotor to the Load


- Once you know the value is there, it is important to "match" the electric load with the correct turbine size
 - Make sure amount of electricity that is used (Demand) on a regular basis is more than what a turbine will Generate.
 - > Why? excess power is generally not credited at a retail rate

Turbine size	Dairy Herd Size	Electricity Bill range	Reference point: How many homes?	Notes
2-10 kW	<100 head	<\$350/month	1	
25 kW	100 – 500 head	\$350/month - \$1,000/month	5-10	Very easy almost everywhere!
100 kW	500 - 3,000+ head	>\$1,000/month	20-30	Depends on utility NET Meter Caps.
MW-scale	>3000 head	>\$10,000/month	100++	Be aware of Permitting considerations

Many Opportunities in Kansas

- From a purchased list of dairy-related businesses, over 500 showed good economic returns.
- Additional opportunities in business/industrial sector

Wind Power Economics Overview

What Makes a Good Wind Project?

Project Economics depend upon:

> Wind Resource

- How much wind is there at your site?
- The higher the wind, the more you can make

Energy Cost (Utility Rates)

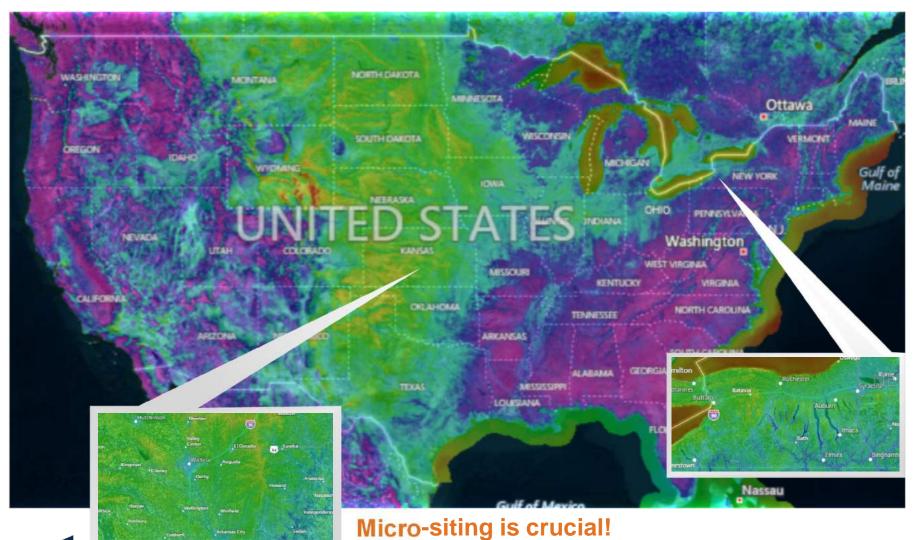
- How much is wind-generated energy worth?
- The higher your current cost, the greater the value of the energy you can make on your own

Incentives

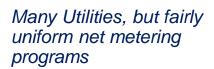
 Federal 24% (ITC) Investment Tax Credit, KS-SEO, USDA-REAP

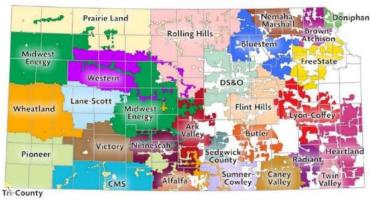
The quick math

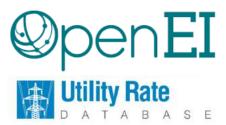
- Up front cost = \$250K or less up front cost (after tax credits/incentives)
- The turbine can make \$15k-\$40k worth of electricity in a year. *

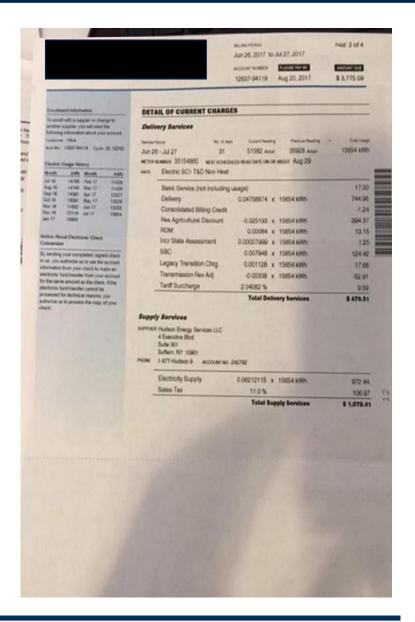


Wind in the United States


Light blue / green / yellow / red are high quality wind regimes







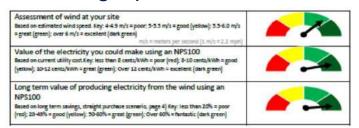
Energy Costs

- Electricity Rates can be complex
 - Commercial Rates
 - Ag Rates
 - Every bill is different the one at the right is actually pretty simple!
- Good resources to estimate rates for economic analysis, including:

Wind Power Savings Report – What's it to you?

What's it to you?

Analyzing Wind Speed, Energy Production, & Utility Rates at Precise Locations


Northern Power will run this report for <u>your specific location</u>

Wind Power Savings Report

- Visual Meters for
 - > Wind speed
 - Electricity Rate
 - Lifetime savings
- Wind speed
- Utility rate
- Annual production
- ❖ Translate above to
 - Current year equivalent savings
 - Value 10 years from now
- Initial project Cost
- Financing Options

Flexible Financing Options

Flexible Financing Options

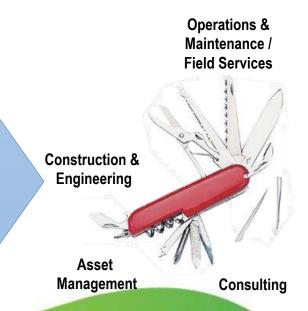
	POWER PURCHASE PROGRAM	LEASE-TO- OWN OPTION	LOAN OPTION	STRAIGHT PURCHASE
Key financing feature	Immediate savings on current costs (10%)	Own the turbine after 7-9 years of lease payments	Own the turbine with financing by your local lender	
Predictable and stable energy costs	1		1	1
3 rd party monetizes tax benefits and passes savings to you				
You monetize 100% of tax benefits directly (MACRS and ITC)			1	1
Own the asset and its value				

Trevor Atkinson Northern Power Systems

203-427-3606 Cell 802-461-2847 Office tatkinson@northernpower.com

Definitions

What is O&M


- Operations Management of the system from day to day actions all the way to spare parts.
- Maintenance Preventative maintenance, major and minor corrective, and project work.

What is engineering

- Civil Design, build, supervise, operate, and maintain construction projects and systems in the public and private sector, including roads, buildings, airports, tunnels, dams, bridges, and systems for water supply and sewage treatment.
- **Electrical** Design, develop, test, and supervise the manufacturing of electrical equipment, such as electric motors, radar and navigation systems, communications systems, or power generation equipment.
- Program Management Understanding the project timeline, while keeping everything on schedule and in budget.

Who is Ethos

- Ethos Distributed Solutions is based in Denver, Colorado and provides wind, solar and telecommunications services nationally.
- Presently Ethos is working on over 300 distributed energy projects covering 32 states, including Alaska, and in the Bahamas on a US military installation.
- Our team of experienced professionals customize high-quality and cost-effective solutions to address each client's specific requirements across the entire life cycle of a capital project.
- Service offerings: Consulting, Development, Construction, Operations & Maintenance (field services), and Asset Management.
- Provide ongoing operations and maintenance support to 28 different turbine types ranging from 50 kW to 2.3 MW.
- Perform construction QA services to date we have completed these inspections on over 1900 MW of utility-scale wind projects.
- New site construction services for telecommunications towers, telecommunications roof top installations, solar and wind projects.
- Over 12 MW of solar under operations & maintenance contracts. Projects range in size from 250 kW to 5 MW.
- Full time, on site staffing solutions and traveling solutions, depending on project.

Wind vs Solar Maintenance

Solar

• TYCO connectors, ants, broken modules, fuses, switches, home-runs, soiling, inverter control panels, and weather stations.

Wind

 Blades, towers, generators, connectors, cables, PLC's, gearboxes, fuses, and weather stations.

Atypical Defect

Cost of Time

- 2 MW and 2500 kV switchgear goes down
 - 10 cents kWh you are losing \$1000's of dollars a day
- If it is a string, you are losing pennies a day
- Owner needs to be an active partner
- Local resets vs. Owner resets

Routing is Important

Ways Ethos increased Output

- Took over sites from previous O&M provider.
- Have fully trained technicians in 28 different turbine types.
- Hired guys out of Greensburg.
- Utilized local resets where it made financial sense.

Asset management

- Spare parts available
- Spare parts inventory
- Consumable inventory
- Reporting are you getting what you think your getting.
 - Type of report
 - Actual Production vs. Perceived Production

First Steps to a New Construction Project

Ethos envisions a relationship where the customers are qualified prior to Ethos beginning work on the development phase of the project. The customer qualification should include:

- Project vetted financially customer is happy with all economics and Vendor is satisfied with customer's ability to complete a project.
- Utility bill is examined and it is determined that demand charges and net metering issues will not stop the project. Local utility has been contacted and the process for interconnection & net metering is understood and looks viable.
- "Quick-kill" issues have been reviewed and found acceptable (including wetlands, environmental, zoning, etc.).
- Local zoning & permitting agency(ies) have been contacted to confirm that zoning and permitting should be reasonable.
- Access roads

Indicative Pricing Model

Ethos has produced an indicative pricing model that includes 3 pricing points. The first is the initial on-site meeting, the second is for the remaining development, and last is for full construction.

Pricing is not final until engineering is complete. Things that can drive pricing are

Our indicative pricing is based on a sample project with the following assumptions:

- Distance from the correct resources.
- Foundation type.
- Soil Conditions.
- Electrical interconnection run from interconnection point to tower, and includes a minimal amount of rework to existing infrastructure, as described below.
- Copper vs. Aluminum
- A maximum of 2 site visits per site are included in the development pricing section (a site can have multiple turbines so long as it is one permit and one interconnection application).
- The task list is shown below.

Ethos introduced to Project

Initial site meeting, vetting & design (move to front)

- Site walk
- Design electrical connection
- Meet zoning & utility planners
- Look for local vendors for Geotech, concrete, and crane
- Confirm that turbine location, existing infrastructure, and local vendors meet standard pricing model
- Note: among the items to complete on this site walk are any final "quick-kill" checks if there are items that could stop the project we must make certain that they are identified here.

Project timeline – develop based on site meetings

Regulatory

- FAA review & submission as required
- Zoning

Engineering

- Geotech One boring per turbine
- Zoning drawings
- Electrical Construction drawings One-line and drawings sufficient for permitting
- Foundation design drawings

Permit

- Electrical, building
- Submit applications and receive approval

Interconnection & net metering

Submit applications and receive approval

Inclusions / exclusions

No physical survey being performed or required

Scope of Work for Construction

- Starting point of construction phase:
 - All required permits issued
 - Drawing package complete and stamped as required, including:
 - Foundation
 - Electrical
 - Zoning / site
 - All required equipment is ordered with a committed delivery date.

Construction Deliverables

Electrical

- Electrical install pricing consists of the following scope:
 - 200 amp breaker to turbine coming off existing panel
 - 200 amp 480 V NEMA 3R fusible disconnect
 - Revenue grade production meter (Excluded from base price and actual need is TBD)
 - Existing service at sites will vary so the scope varies at each site based on the existing configuration; our pricing is based on the above assumptions.

Foundation – cure time, testing, rebar meets spec, tied in appropriate fashion.

This is a custom designed foundation and the companies engineer came out to watch us build it.

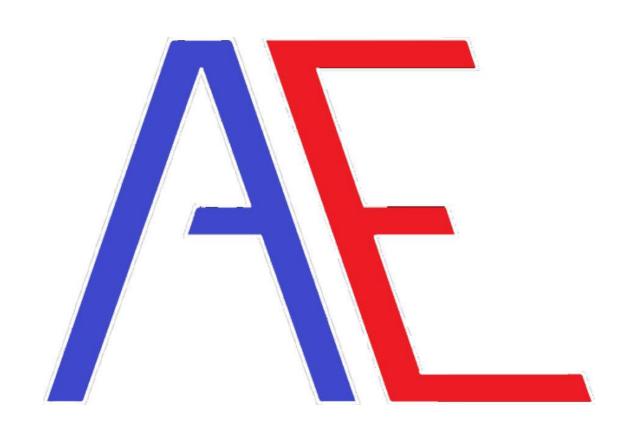
 Assume anchor bolts, anchor bolt embedment plate, and spacing template provided by tower manufacturer.

Controls & Communication

 Internet connection from existing internet connection to turbine (assuming 200' run in conduit of CAT5e cable)

Erection

- Crane operators need to be certified
- Everyone on site is certified for the tasks they are completing.
- Assume ? crane days for erection.



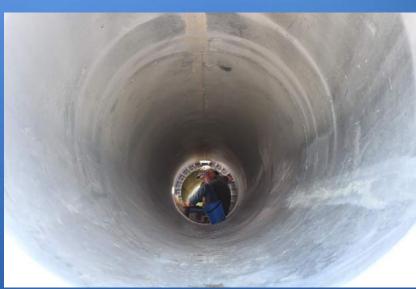
Commissioning

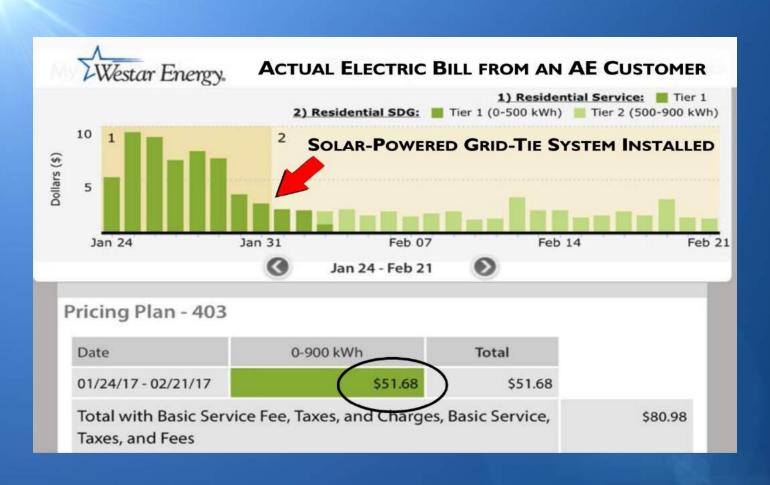
- Commissioning to be performed by 3rd party
- Wind vs. Solar
 - Typically a manufacturer is involved with the project for wind.
 - For solar, there is typically a GC that is putting the pieces together.
- Example pricing assumes 1 technician for 1 day for commissioning support

About Alternative Electric, LLC

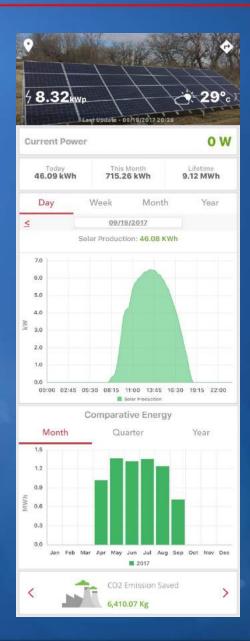
eocycle

Recent Wind Turbine Project in Kansas



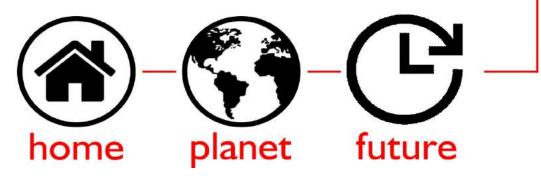

Solar Array Projects

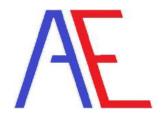
Benefits of Solar



Introducing the Storedge System

There's an App for that...




Cost of Wind vs. Solar

harnessing

RENEWABLE ENERGY

for your-

Alternative Electric, LLC Matt Pascal, Owner 316.461.8225 www.altelectricllc.com

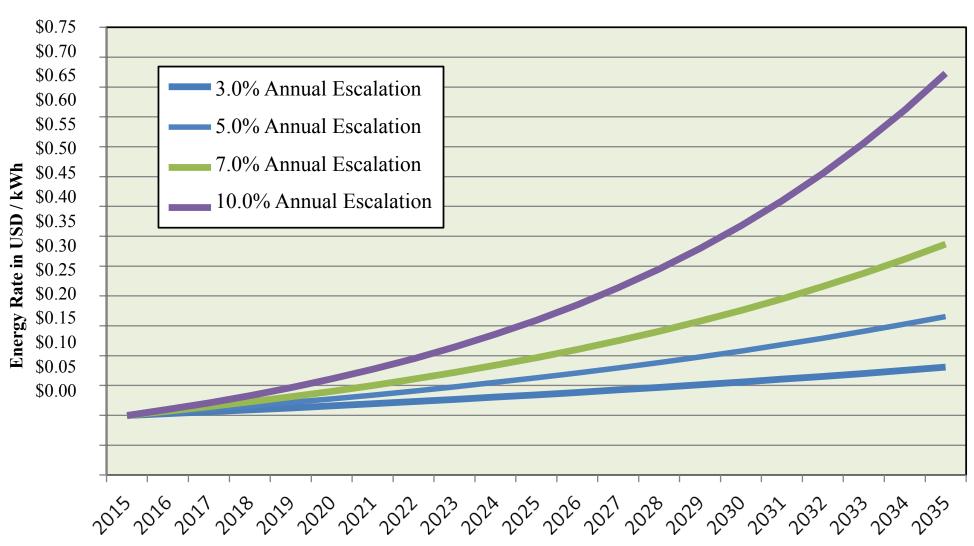
Time lapse video of installation: Click here

GREENSBURG & EERING **EKANSAS**

Why Solar?

Representative Boyd Orr Fowler Feeders

Power Rate Growth & Solar Grid Parity


The Rise in Commercial Energy Rates

Power Rate Growth & Solar Grid Parity

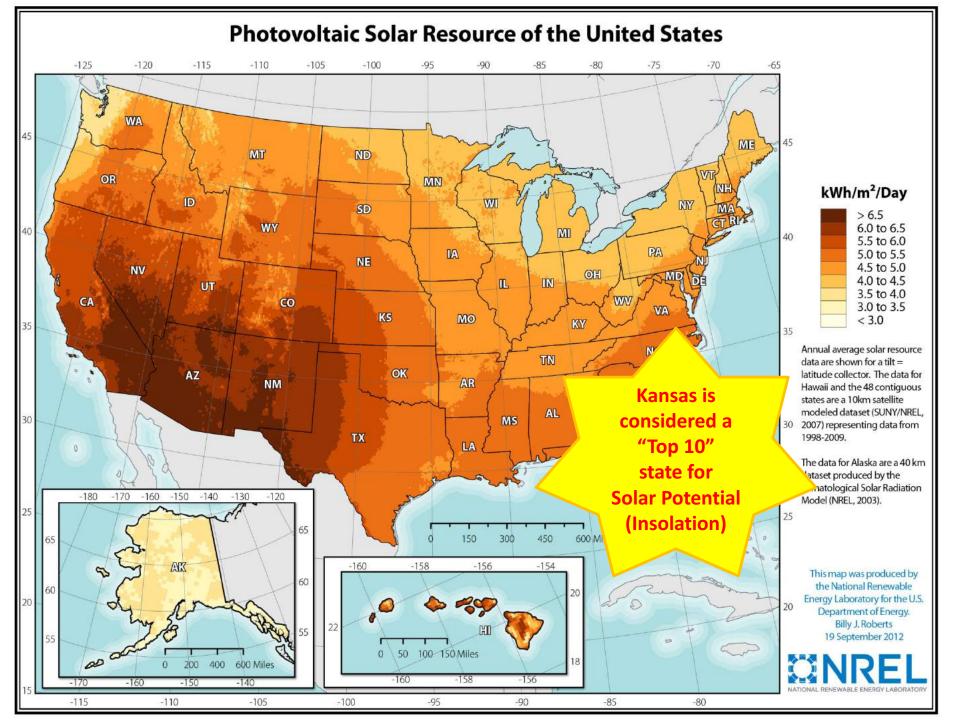
Impact of Rising Power Costs

Previous Projects

415 kW Project: Cattle Feedlot - Fowler, Kansas

Community Solar: Choices, Challenges, Results

Why Did MWE Do This?


- Economical: Cost of PV solar dropped 60% since 2009
- Pull: 40% of customers expressed interest (2012-2013)
- Opportunity: Learn more about production values
- Positioning: Become a "we" participant in DisGen discussion

Finding a Partner

- Experience: CEC had completed dozens of utilityscale projects in 6 states since 2009
- Regional: Based in Boulder, Colo.
- Willing: Flexibility on certain terms of PPA

MWE's Community Solar Array

- Members purchase solar panels in array
- One-time, all-in cost (\$891/panel or \$2.92/Watt)
- Monthly bill credit for power produced
- 25-year PPA between MWE and CEC
- Federal tax incentives 'buy down' panel cost
- CEC handles siting, const., marketing, operations
- Purchase up to 8kW residential (26 panels), up to 75kW commercial (250 panels)

✓ Array is 100% sold as of Mar. 2016

✓ Panels were \$891 each, with a payback of approx. \$57/year over 25 years (6.4%)

MIDWEST ENERGY INC PO BOX 898 HAYS KS 67601 800-222-3121

Total Adustment

800-222-3121 www.mwenergy.com ACCOUNT NUMBER:

MICHAEL W MORLEY

1916

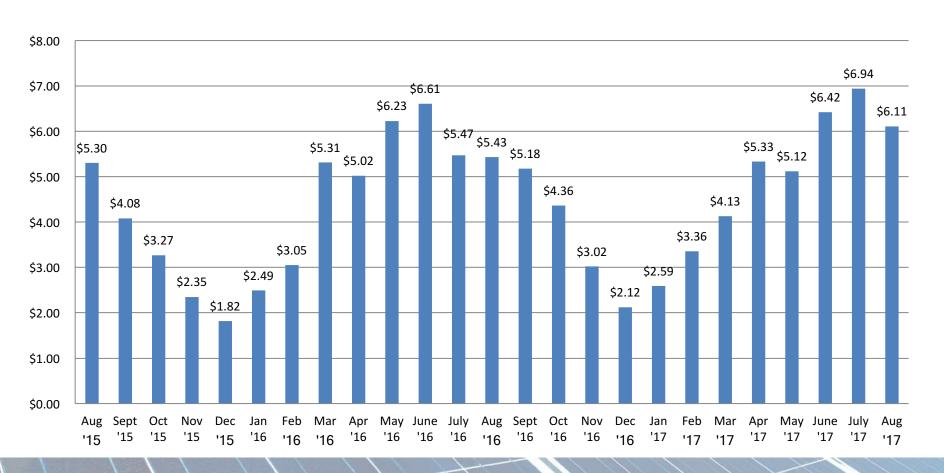
BILL DATE:

9/20/2017

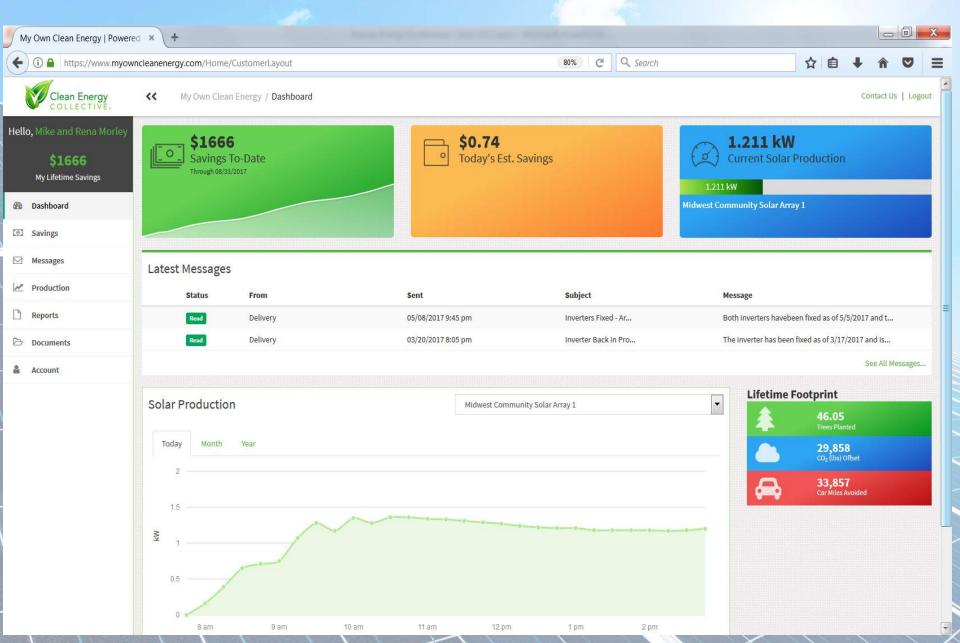
\$73,34

SERVICE ADDRESS: 1408 W 46TH ST, HAYS

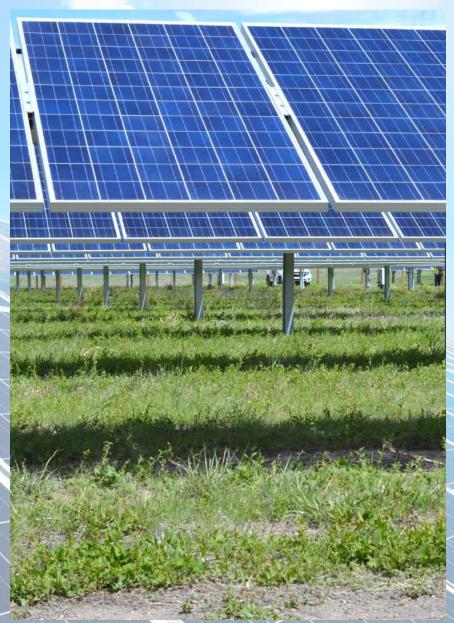
Electric Service									
Rate	Meter Number	Previous Read Date	Current Read Date	Number of Days	Previous Reading	Current Reading	Meter Multiplier	kWh Used	Billing Demand
RES	2000000086	8/15/2017	9/12/2017	28	9002	10366	1	1364	0
Electr	ric Customer Cha	arge						\$14.0	00
Electr	ic Energy Charg	je .						\$142.9	92
Trans	mission Delivery	/ Charge						\$11.9	95_
Total	Electric - Resid	lential						\$168.8	37


				Gas Servi	ice				
Rate	Meter Number	Previous Read Date	Current Read Date	Number of Days	Previous Reading	Current Reading	Therm Factor	Therms Used	
RGTS	10027854	8/15/2017	9/19/2017	35	2044	2044	1.0057	0	
Gas C	ustomer Charg	е						\$18.00	
Gas In	frastructure Ric	der					10-	\$0.37	
Total (Gas - Resident	tial						\$18.37	
				Adjustme	ent				
Solar	Credit						-	\$73.34	CR

Donation


Actual Production: 24 Months

Credits for one panel


Realized: \$111.11 (vs. \$57/yr, \$114/2 yr predicted) 6.2% Rate of Return over 24 mos.

Online Customer Portal

Maintenance: Minimal

How Do Customers Like It?

First national survey of Community Solar participants, 2016

	POPULATION	MIDWEST
Count of respondents	639	26
Respondents satisfied or very satisfied with the program (%)	92%	88%
Respondents who would definitely recommend or probably recommend the program (%)	92%	92%
Respondents who believe that program was explained clearly (%)	91%	88%
Percent of electric bill covered by participant subscription (%)	39%	33%

How Do Customers Like It?

First national survey of Community Solar participants, 2016

	<u>POPULATION</u>	MIDWEST
Top 3 ways how subscriber learned of program with percent respondents who selected the reason.	Bill (45%) Mail / Email (23%) Word of mouth (8%)	Bill (50%) Mail / Email (12%) Radio (12%)
Top 3 reasons listed for joining program with percent respondents who selected the reason.	Environmental (53%) Financial benefits (40%) No roof installation (27%)	Financial benefits (58%) Environmental (54%) No roof installation (50%)
Top 3 reasons for selecting community solar over rooftop solar with percent respondents who selected the reason.	Don't want to deal w/ maintenance (40%) Liked economies of scale of central array (24%) Rooftop not ideal for solar (20%)	Don't want to deal w/ maintenance (62%) Liked economies of scale of central array (31%) Don't want to penetrate roof (62%)
How participation has affected respondents relationship with their utility (% more satisfied % no change % less satisfied)	37% more 1% less	35% more 0% less
Respondents very satisfied or somewhat satisfied with the electricity production data available (%)	81% satisfied 5% dissatisfied	92% satisfied 4% dissatisfied
Respondents stating billing and crediting process is clear and consistent with expectations (%)	85%	88%

Questions?

Flint Hills Renewable Energy & Efficiency Cooperative

In Manhattan, we've begun buying in bulk, splitting the cost and helping each other put the system up on each other's homes. Usually we all meet on a Saturday morning and have a pot luck like an old fashioned "barn raising" where you invite us over to help you. The ground crew mounts inverters to panels while the crew on the roof mounts rails. 6 people is a sufficient crew but sometimes we get 25.

Micro Inverters & AC Modules

- Each module has its own inverter so shading only blocks production from that module and they can face various directions...South being best
- No work involving DC or high voltage
- Each module has its own monitoring so trouble- shooting is very much easier
- Arrays are expandable in steps of one module
- Don't have to find matching module replacements in case one is broken
- All connectors are touch safe.
 All are plug and play so any homeowner who is reasonably comfortable on a roof can safely install them.

• The New Inverters have only two wires: L1 & L2 so it would take effort to screw up the wiring.

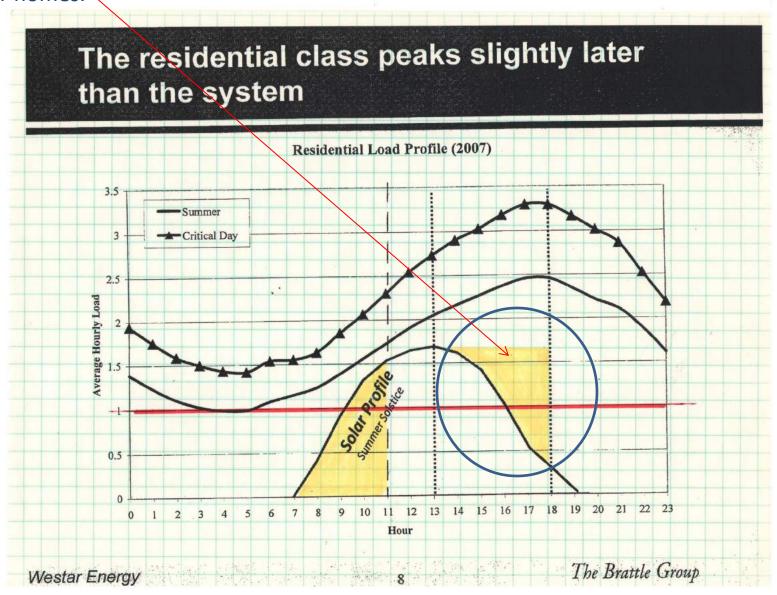
Disadvantage: Rooftop mounting exposes electronics to high temperatures. But these are warrantied for 25 years.

	Canadian Solar 340W	. All Hardware	. Wholesale 2017
--	---------------------	----------------	------------------

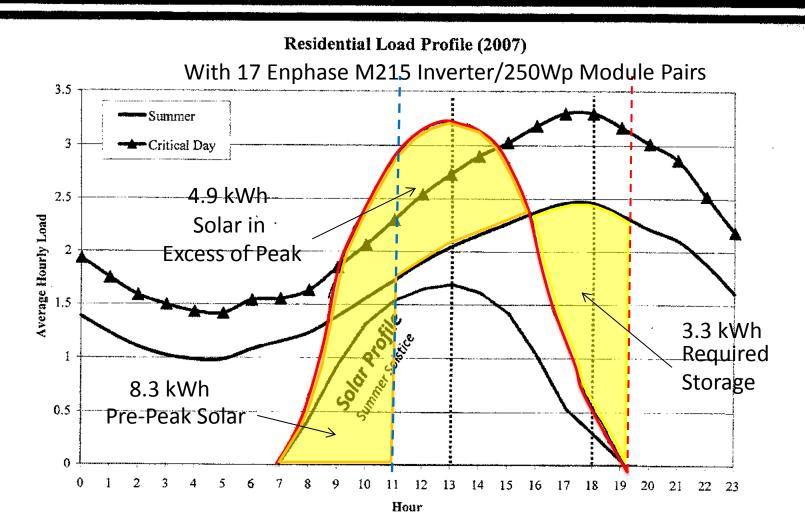
System Si	ze	With	Monitor	- 30%	6 Tax Credit		Wp	\$/Wp			Yrly Return *		ROI	I
# Panels	3	\$	2,835.46	\$	1,985		870	\$	2.28		\$	144.55	7.3%	
	4	\$	3,418.62	\$	2,393		1160	\$	2.06		\$	192.74	8.1%	
	5	\$	4,001.77	\$	2,801		1450	\$	1.93		\$	240.92	8.6%	
	6	\$	4,584.92	\$	3,209		1740	\$	1.84		\$	289.11	9.0%	
	7	\$	5,168.08	\$	3,618		2030	\$	1.78		\$	337.29	9.3%	
	8	\$	5,751.23	\$	4,026		2320	\$	1.74		\$	385.48	9.6%	
	9	\$	6,334.38	\$	4,434		2610	\$	1.70		\$	433.66	9.8%	
	10	\$	6,917.54	\$	4,842		2900	\$	1.67		\$	481.85	10.0%	
	11	\$	7,500.69	\$	5,250		3190	\$	1.65		\$	530.03	10.1%	
	12	\$	8,083.85	\$	5,659		3480	\$	1.63		\$	578.22	10.2%	
1 Branch	13	\$	8,667.00	\$	6,067		3770	\$	1.61		\$	626.40	10.3%	
	14	\$	9,250.15	\$	6,475		4060	\$	1.59		\$	674.58	10.4%	
	15	\$	9,833.31	\$	6,883		4350	\$	1.58		\$	722.77	10.5%	Ī
	16	\$	10,416.46	\$	7,292		4640	\$	1.57		\$	770.95	10.6%	Ī
	17	\$	10,999.62	\$	7,700		4930	\$	1.56		\$	819.14	10.6%	Ī
	18	\$	11,582.77	\$	8,108		5220	\$	1.55		\$	867.32	10.7%	Ţ
	19	\$	12,165.92	\$	8,516		5510	\$	1.55		\$	915.51	10.8%	Ι
	20	\$	12,749.08	\$	8,924		5800	\$	1.54		\$	963.69	10.8%	I
	* Comme	rcial	Installers charg	ge by	the "Nam	ie	Plate Arra	v Car	pacity" ins	te	ad of	the actual ca	pacity	

^{*} Commercial Installers charge by the "Name Plate Array Capacity" instead of the actual capacity

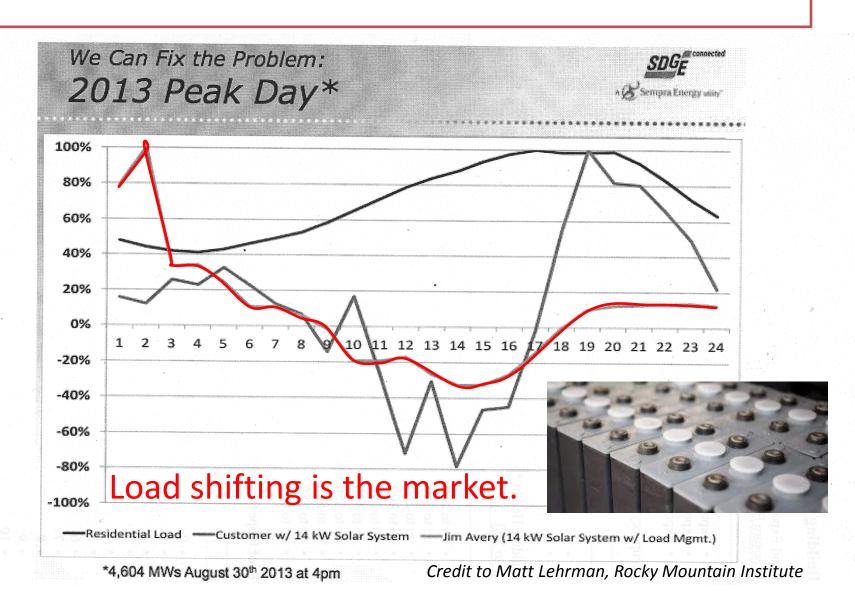
Fees and Permits will run approximately \$115

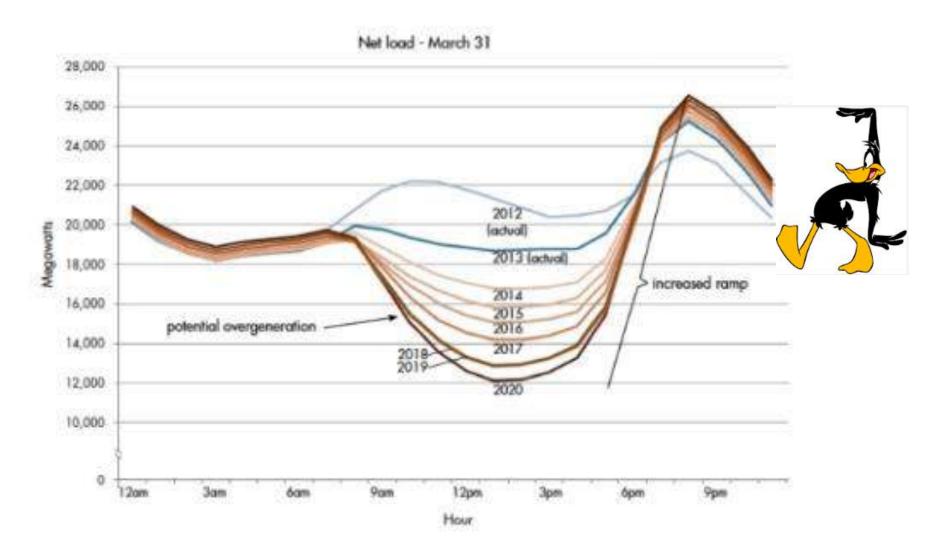

Electrician will typically charge \$300-\$400 to run back to your breaker panel.

** Yearly Return based on not exporting anything back to the utility


One Branch, 13 Panel, 3,770W	(actual capacity) PV System, Sept. 2017	7

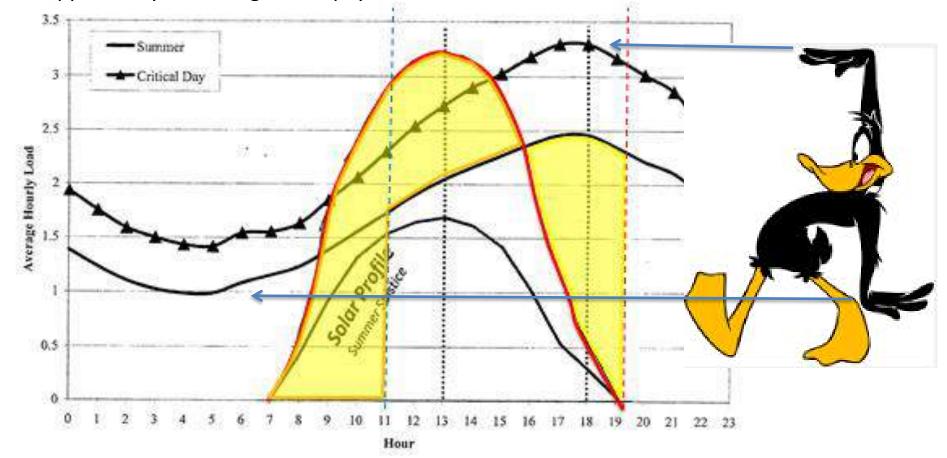
Costs which va	ry by the nu	ımber of panels	\$	7,581			
Plus Fixed	Plus Fixed Costs (i.e.disconnect, system monitor)						
		Total Costs	\$	8,667			


At this moment when the sun goes down but people are still watching TV in the air conditioning, utilities still have to run their generators, and deliver the peak power to our homes.


The residential class peaks slightly later than the system

Solar With Today's Storage

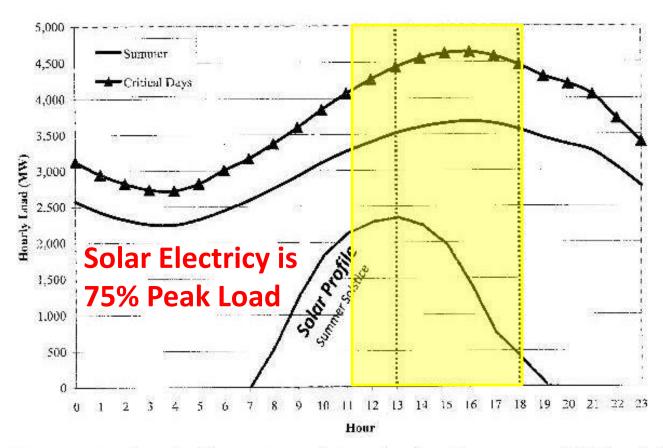
Let's think of the "Duck Curve" in Kansas

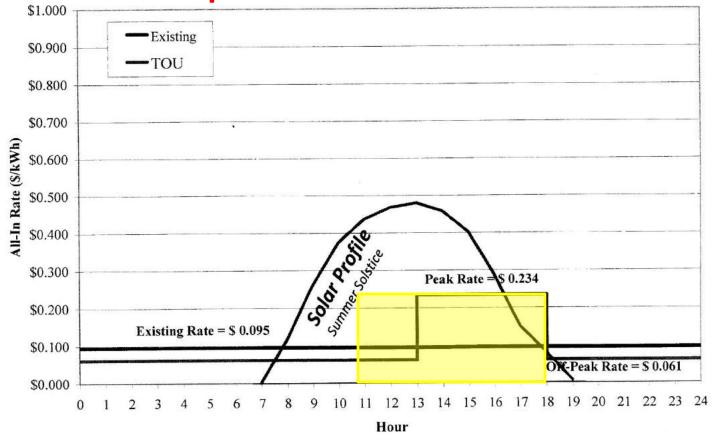


Solar Potential in Kansas: Jan 2012 to Dec 2016

CLR	no clouds		3434	Total Solar Hours o	rees F.				
SKC	~no clouds	93.7%	3216	CLR	93.65%	no clo	uds		
FEW	12 - 25% cloudy	4.3%	146	SCT	4.25%				
SCT	37 - 50% Cloudy	1.9%	64	BKN	1.86%	63 -889	% Cloudy		
BKN	63 -88% Cloudy	0.2%	8	OVC	VC 0.23% 1		100% Coudy		
OVC	100% Coudy		SCT = 3/8-4	4/8, BKN = 5/8-7/8, (OVC = 8/8				
94%	Of Critical Peak days are cloudless								
98%	Have less than 50% Cl	oud Cover		97.90%	with f	fewer	37 - 5	0% Cloι	ıdy

The same amount of sun shines on two panels whether it is on my roof or in a centralized array. They both have the same efficiency except that on my roof it doesn't have to travel as far on hot cables. They fit exactly the same way in Westar's generation profile.


Historically utilities can't leave customers sweltering (or dying) on the 15 Critical Peak Days. This is the dimension of the intermediate and peak load designed into Westar's infrastructure, both generation and distribution ...2.5 X baseload. This is a huge opportunity for saving all ratepayers.

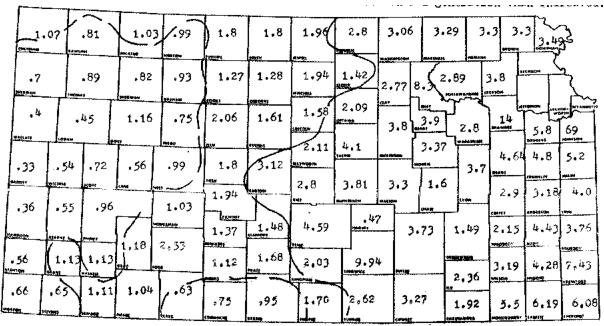

The Sun's energy is a close match to when we need it most.

Our Peak Use Period is from the time we get ready for work to the time we come home, turn on the air conditioning and cook supper.

Average Hourly System Load (2007)

Like advertising at the SuperBowl or airplane tickets on Christmas Eve, these minutes of high demand are expensive...almost 4x for utilities to generate and distribute as off-peak.

Peak Load Distribution


- Pacific Gas & Electric's typical feeder is used over 50% of capacity ...only 40% of the time. There is a lot of investment that is not being used. Westar appears to have much the same.
- For a typical urban utility, 60% of their fixed assets are in transmission and distribution.

If much of the peak can be generated where the electricity is used, what savings might be made for all rate payers?

How about Rural Electric Cooperative's?

• If municipal utilities have 60-70 customers/mile of distribution line, this map will indicate the relative costs of reconstructing and maintaining the REC distribution system.

Kansas Rural Electric Cooperatives (and municipal utilities) should already buy their base load wholesale and encourage/finance their members to generate their own peaks. It would add reliability, provide voltage support and might save their members on cost in restringing their lines.

If utilities are to use distributed generation to reduce the size required of their distribution systems, we need to provide enough storage to cover the worst days.

July 29, 2012 wasn't a historical worst case but it is instructive of how much storage will be required.

This is eight hours over 100F...after sun down.

7/29/	2012	is one of t	he most	extreme o	days since 2	2012		
2012 was a	a year of a very high	number of	days wl	nen tempe	rature read	ched 100	OF or above.	
Of these "	critical peak" days, t	he time of	highest	temperat	ures were	mostly a	after sundown.	
Coffeyvill	10 hours 4:00 to 2:00	O AM above	100F					
WBAN	YRMODAHRMN	DIR	SPD	SKC	TEMP	DEWP		
93967	201207290652	170	3	CLR	83	59		
93967	201207290752	180	5	CLR	80	61		
93967	201207290852	180	6	CLR	81	62		
93967	201207290952	190	7	CLR	82	61		
93967	201207291052	170	6	CLR	79	61		
93967	201207291152	170	6	CLR	80	61		
93967	201207291252	160	6	CLR	82	61		
93967	201207291352	200		CLR	89	62		
93967	201207291452	240	11	CLR	97	61		
93967	201207291552	240	16	CLR	102	60	4:00 PM	
93967	201207291652	240		CLR	105	60		
93967	201207291752	270		CLR	107	58		
93967	201207291852	240		CLR	108	56		
93967	201207291952	230		CLR	108	57		
93967	201207292052	210		SCT	109	56		
93967	201207292152	240		CLR	109	54		
93967	201207292252	240		CLR	109	53		
93967	201207292352	240		CLR	108	53		
93967	201207300052	200		CLR	105	55		
93967	201207300152	200		CLR	100	58	2:00 AM	
93967	201207300252	190		CLR	95	59		
93967	201207300352	190		CLR	94	57		
93967	201207300452	200		CLR	90	57		
93967	201207300552	190		CLR	88	56		
93967	201207300559	***	***	***	****	****		
93967	201207300652	210		CLR	91	56		
93967	201207300752	220		CLR	90	56		
93967	201207300852	220		CLR	89	55		
93967	201207300952	220		CLR	89	55		
93967	201207301052	200		CLR	88	55		
93967	201207301152	160	6	CLR	82	57		

Energy Sentry

Residential (& Business) Controllers

Energy Sentry Residential Demand Controllers manage your non-essential electric loads to reduce peak demand and improve energy efficiency. What does this mean?

The Energy Sentry will stabilize your home's electric use by managing equipment with thermal storage such as water heaters, air conditioners, hot tubs etc. Electric loads like these can be turned off for small periods of time without effecting overall comfort or convenience.

Loads such as lighting, televisions, computers and other plug loads are not managed by the Energy Sentry. By controlling large electric loads with thermal storage the Energy Sentry will make your home more energy efficient, reduce your electric bills, and save you money!

Every electrical device has a unique electronic signature – its own voice. There is a noisy conversation happening inside your home as every device that's turned on is talking. All at once.

Energy Storage

Electrical Storage

- We learned that electricity is very high quality energy, and expensive to store.
- It should be used for services that can only use electricity, lighting, data processing...
- Cars need expensive light weight of LiFePO₂, houses do not. Minimize those.

Thermal Storage

- Providing low grade temperature changes whether heating or cooling with high value electricity is a wasteful mismatch.
- Chilled water in a tank is much less costly than chemical batteries for what we need for peak in Kansas.

Except in rare district heating, thermal storage lends itself only to distributed generation

Jeffery Energy Center:

Burns up to 36,000 tons of coal per day And uses 24,000 gallons of water per minute

Westar Website

Risks? Sure, but there are greater risks in waiting for more Harveys and Irmas.

Whether it's the carrot or the stick that gets you moving, there is no justification for waiting.